hdu 2157 How many ways??
题目:http://acm.hdu.edu.cn/showproblem.php?pid=2157
How many ways??
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2098 Accepted Submission(s): 769
Problem Description
春天到了, HDU校园里开满了花, 姹紫嫣红, 非常美丽. 葱头是个爱花的人, 看着校花校草竞相开放, 漫步校园, 心情也变得舒畅. 为了多看看这迷人的校园, 葱头决定, 每次上课都走不同的路线去教室, 但是由于时间问题, 每次只能经过k个地方, 比方说, 这次葱头决定经过2个地方, 那他可以先去问鼎广场看看喷泉, 再去教室, 也可以先到体育场跑几圈, 再到教室. 他非常想知道, 从A 点恰好经过k个点到达B点的方案数, 当然这个数有可能非常大, 所以你只要输出它模上1000的余数就可以了. 你能帮帮他么?? 你可决定了葱头一天能看多少校花哦
Input
输入数据有多组, 每组的第一行是2个整数 n, m(0 < n <= 20, m <= 100) 表示校园内共有n个点, 为了方便起见, 点从0到n-1编号,接着有m行, 每行有两个整数 s, t (0<=s,t<n) 表示从s点能到t点, 注意图是有向的.接着的一行是两个整数T,表示有T组询问(1<=T<=100),
接下来的T行, 每行有三个整数 A, B, k, 表示问你从A 点到 B点恰好经过k个点的方案数 (k < 20), 可以走重复边。如果不存在这样的走法, 则输出0
当n, m都为0的时候输入结束
Output
计算每次询问的方案数, 由于走法很多, 输出其对1000取模的结果
Sample Input
4 4
0 1
0 2
1 3
2 3
2
0 3 2
0 3 3
3 6
0 1
1 0
0 2
2 0
1 2
2 1
2
1 2 1
0 1 3
0 0
Sample Output
分析:大意是在有向图中确定由A到B经过K点(包括B)有几种走法。【最初真的一点正确的思路都没有||-_- 】
矩阵乘法中有这样一个重要的步骤:c.m[i][j]=c.m[i][j]+a.m[i][k]*b.m[k][j] 这和有向图中A到B的路线数目计算和联系,即A到B可经过第三个间接点(作为中转站)到达,所以数目累加。于是图论就和矩阵联系在一起:
K=1,matrix[a][b]的值就是结果【即1或0】;
K=2,matrix[a][b]=matrix[a][b]+matrix[a][k]*matrix[k][b],中间多了一个K点。
K=3,a和b之间再加一个K点,于是变成了经过3点(包括B)
以此类推。。。
所以结果就是有向图的邻接矩阵的K次幂后A[a][b]%mod的值。
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int mod=1e3;
int n,m;
struct matrix{
int m[21][21];
};
matrix A,I;
matrix multi(matrix a,matrix b){
matrix c;
for(int i=0;i<n;i++){
for(int j=0;j<n;j++){
c.m[i][j]=0;
for(int k=0;k<n;k++){
c.m[i][j]=(c.m[i][j]+a.m[i][k]*b.m[k][j]%mod)%mod;
}
}
}
return c;
}
matrix power(int k){
matrix ans=I,temp=A;
while(k){
if(k&1)ans=multi(ans,temp);
temp=multi(temp,temp);
k>>=1;
}
return ans;
}
int main()
{
//freopen("cin.txt","r",stdin);
for(int i=0;i<21;i++)I.m[i][i]=1;
while(cin>>n>>m&&(n+m)){
int a,b,k,t;
memset(A.m,0,sizeof(A.m));
for(int i=0;i<m;i++){
scanf("%d%d",&a,&b);
A.m[a][b]=1;
}
scanf("%d",&t);
while(t--){
scanf("%d%d%d",&a,&b,&k);
matrix res=power(k);
printf("%d\n",res.m[a][b]);
}
}
return 0;
}