- 如何做好人生的选择题?百科全书式天才——赫伯特·西蒙给你答案
伽马有话说
赫伯特·西蒙是谁?想必知道的人非常少。但当看到他的履历后,相信没有人再怀疑他是个“天才”。西蒙出生于1916年6月15日,是个美国人,他的名字全称为赫伯特·亚历山大·西蒙,在2001年2月9日与世长辞,在这84年的岁月中,西蒙以27岁时取得的政治学博士学位为开端,先后步入了政治学、管理学、认知心理学、信息科学、人工智能、科学哲学、应用数学、统计学、运筹学、控制论、数理经济学、公共管理等领域,在这些
- 数学建模、运筹学之非线性规划
AgentSmart
算法学习算法动态规划线性代数线性规划
数学建模、运筹学之非线性规划一、最优化问题理论体系二、梯度下降法——无约束非线性规划三、牛顿法——无约束非线性规划四、只包含等值约束的拉格朗日乘子法五、不等值约束非线性规划与KKT条件一、最优化问题理论体系最优化问题旨在寻找全局最优值(或为最大值,或为最小值)。最优化问题一般可以分为两个部分:目标函数与约束条件。该问题的进一步细分也是根据这两部分的差异。最优化问题根据变量的取值范围不同可以划分为一
- 运筹学——图论与最短距离(Python实现)(2),2024年最新Python高级面试framework
m0_60575487
2024年程序员学习图论python面试
适用于wij≥0,给出了从vs到任意一个点vj的最短路。Dijkstra算法是在1959年提出来的。目前公认,在所有的权wij≥0时,这个算法是寻求最短路问题最好的算法。并且,这个算法实际上也给出了寻求从一个始定点vs到任意一个点vj的最短路。2案例1——贪心算法实现==============2.1旅行商问题(TSP)**旅行商问题(TravelingSalesmanProblem,TSP)**
- 数学建模笔记——动态规划
liangbm3
数学建模笔记数学建模笔记动态规划python背包问题算法优化问题
数学建模笔记——动态规划动态规划1.模型原理2.典型例题2.1例1凑硬币2.2例2背包问题3.python代码实现3.1例13.2例2动态规划1.模型原理动态规划是运筹学的一个分支,通常用来解决多阶段决策过程最优化问题。动态规划的基本想法就是将原问题转换为一系列相互联系的子问题,然后通过逐层地推来求得最后的解。目前,动态规划常常出现在各类计算机算法竞赛或者程序员笔试面试中,在数学建模中出现的相对较
- 数学建模笔记—— 非线性规划
liangbm3
数学建模笔记数学建模笔记pythonmatlab非线性规划算法学习优化问题
数学建模笔记——非线性规划非线性规划1.模型原理1.1非线性规划的标准型1.2非线性规划求解的Matlab函数2.典型例题3.matlab代码求解3.1例1一个简单示例3.2例2选址问题1.第一问线性规划2.第二问非线性规划非线性规划非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。20世纪50年代初,库哈(H.W.Kuhn)和托克(A.W.T
- [01] 动态规划解题套路框架
_魔佃_
本文解决几个问题:动态规划是什么?解决动态规划问题有什么技巧?如何学习动态规划?刷题刷多了就会发现,算法技巧就那几个套路。所以本文放在第一章,来扒一扒动态规划的裤子,形成一套解决这类问题的思维框架,希望能够成为解决动态规划问题的一部指导方针。本文就来讲解该算法的基本套路框架,下面上干货。labuladong的算法小抄首先,动态规划问题的一般形式就是求最值。动态规划其实是运筹学的一种最优化方法,只不
- 非理工科院校怎么打好数学建模比赛 | 南川笔记
南川笔记
Proposition1非理工科院校最好不要打数学建模比赛。虽说“一次建模,终身受益”,但毕竟数学建模既要数学理论的支撑(不仅仅是大学里的微积分、线性代数和概率论与统计,更多的是基于微积分的常偏微分方程、基于线性代数的运筹学和基于概率论与统计的统计分析内容),还要编程的支撑(不是常规的C语言或者Java程序,也不是这几年很火的Python编程,而是基于数值运算的Matlab和基于统计的R),这在一
- 11.4 看不懂就慢慢看啊
反复练习的阿离很笨吧
记得组合数学正交拉丁方从0开始!突然觉得老师说得很有道理,演化计算里活得最好的,不是最优秀的但也不是最差的,是最能适应环境的,别人怎么做,他就怎么做。动态规划,运筹学贝叶斯是生成学习算法,生成一个概率模型判别学习算法高斯判别分析/**NB.java*Copyright2005LiangxiaoJiang*/packageweka.classifiers.gla;importweka.core.*;
- 2024年高教社杯数学建模国赛赛题浅析——助攻快速选题
BZD数模社
数学建模
一图流——一张图读懂国赛总体概述:A题偏几何与运动学模型,适合有几何与物理背景的队伍,数据处理复杂性中等。B题侧重统计和优化,适合有运筹学和经济学背景的队伍,数据处理较为直接但涉及多步骤的决策优化。C题属于优化类问题,涉及复杂的多变量优化与不确定性分析,数据处理难度大。D题涉及概率和优化,特别是几何概率模型的推导,理论难度较高。E题数据量较大,重点在于大规模交通数据的分析与优化,适合擅长交通工程和
- 浅谈【数据结构】图-最短路径问题
超级飞侠12138
基础数据结构数据结构链表c语言c++算法
目录1、最短路径问题2、迪杰斯特拉算法3、算法的步骤谢谢帅气美丽且优秀的你看完我的文章还要点赞、收藏加关注没错,说的就是你,不用再怀疑!!!希望我的文章内容能对你有帮助,一起努力吧!!!1、最短路径问题最短路径问题:是指在图中找到两个顶点,求两个顶点之间最短路径的一个问题。“最短”:通常来说是指路径上面总权值最小,权值(边/弧的长度、成本、时间...)。最短路径问题计算机科学、运筹学、网络理论等多
- 【算法】动态规划
小匠码农
数据结构与算法算法动态规划
文章目录一、动态规划概念二、算法思想三、算法步骤四、应用场景五、动态规划优缺点一、动态规划概念 动态规划(DynamicProgramming,简称DP)是一种广泛应用于数学、计算机科学和经济学等领域的方法论。其核心思想是通过将复杂问题分解为相对简单的子问题,并存储子问题的解以避免冗余计算,从而显著提高计算效率。 动态规划作为运筹学的一个分支,专注于解决决策过程的最优化问题。20世纪50年代初
- 2024SCD与2023SCD目录
m0_55576290
论文笔记
2024SCD目录序号刊名ISSNCN是否新增1数学通报0583-145811-2254/O12大学数学1672-145434-1221/O13数学建模及其应用2095-307037-1485/O14运筹学学报1007-609331-1732/O15数学的实践与认识1000-098411-2018/O16应用数学和力学1000-088750-1060/O37中国科学:数学1674-721611-5
- 【MATLAB源码-第141期】基于matlab的免疫优化算法在物流配送中心选址应用仿真,输出选址图以及算法适应度曲线。
Matlab程序猿
MATLAB路径规划选址matlab算法开发语言
操作环境:MATLAB2022a1、算法描述免疫优化算法在物流配送中心选址中的应用是一个集成了信息科学、生物学原理和运筹学的跨学科研究领域。本文旨在探讨免疫优化算法在物流配送中心选址问题中的应用,包括算法的基本原理、模型构建、算法实现及其在实际物流配送中心选址问题中的应用案例分析。一、免疫系统原理及其启发意义免疫系统是生物体防御外来入侵者的复杂网络,具有识别自身与非自身、记忆以前的入侵者以及在再次
- 2020-3-30睡前日记
半瓢清
今天是什么日子起床:8:00就寝:21:00天气:上午晒的我脸疼,把窗帘拉上了,结果下午晚上有点冷,不……是太冷了,现在脚都冰凉的。心情:一般纪念日:无任务清单昨日完成的任务,最重要的三件事:①给大虞海棠还有乃万还有好几个人,投票了。②写作业了③不记得了……哪有每天完成那么多任务的……改进:无习惯养成:无周目标·完成进度自控作业写完了,明天写运筹学!学习·信息·阅读没得健康·饮食·锻炼今儿搭配三根
- 运筹学的第一课:单纯形法
ordinary_brony
研究生课堂学习笔记算法经验分享其他
文章目录导读单纯形法简介单纯形法的步骤简介单纯形法的一些说明决策变量基变量工艺常数右端常数空白处θ\thetaθ检验数把其中的一些部分组合起来约束方程典则形式计算步骤判断条件(一)出基和进基矩阵变换判断条件(二)写出结果总结导读运筹学第一课会给你讲线性规划,也就是从初中以来我们拿多元一次方程组做的“旅游叫车问题”、“投资问题”等等。相信在这个时候,每个人的第一印象是:我感觉我行了。然后老师就开始讲
- Python 和 Java 代码实现:黄金分割法求解一维最优化问题
twinkle 222
运筹优化学习专栏pythonjava开发语言
Python和Java代码实现:黄金分割法求解一维最优化问题问题描述区间消去法黄金分割法代码实现Python代码Java代码求解实例开启一个新系列的学习,这位大佬的文章写的很通透,且有代码实践,个人觉得只有自己把代码写出来了才是真的会了,我对自己的算法学习要求也是这样的,所以推荐!问题描述我不是运筹学科班出身,工作之前只做过梯度优化算法和智能优化算法在航天场景中的改进和应用。毕业后虽然选择了运筹优
- 服务运营 | 摘要:POMS 1月医疗文章合集
运筹OR帷幄
java数据库人工智能
编者按这一系列文章旨在给读者提供运筹学在医疗应用领域的概览。本文整理了ProductionandOperationsManagement在2024年1月刊中发布的医疗相关文章合集。1.顾客订货行为对医疗产品分发效率的影响文章名:Howmuchdocustomerorderingpracticesdrivemedicalsuppliesdistribution(in)efficiencyforpri
- 2 月 5 日算法练习- 动态规划
小蒋的学习笔记
算法算法动态规划深度优先
DP(动态规划)全称DynamicProgramming,是运筹学的一个分支,是一种将复杂问题分解成很多重叠的子问题、并通过子问题的解得到整个问题的解的算法。在动态规划中有一些概念:nusingnamespacestd;constintN=1e2+5;intn,a[N][N],dp[N][N][N];intmain(){memset(dp,-0x3f,sizeof(dp));cin>>n;for(
- 【数模百科】一文快速讲清楚层次分析法AHP(附python代码和参考美赛论文)
小树modelwiki
python开发语言数学建模算法
本文摘录自层次分析法原理-数模百科,如果你想了解更多关于层次分析法的知识,请移步数模百科。层次分析法(AnalyticHierarchyProcess,简称AHP)是一种解决复杂决策问题的方法。这个方法是由美国运筹学家托马斯·萨蒂(ThomasL.Saaty)在上世纪70年代发明的。那时候,萨蒂教授想要找到一个既科学又实用的方法,帮助人们在面对很多难以直接比较的选择项时,能够做出最合适的决策。比如
- Stata收敛性分析(含详细代码说明和样例数据)
m0_71334485
数据#stata代码收敛性分析stata代码
Stata收敛性分析(含详细代码说明和样例数据)收敛性分析是管理科学和运筹学中重要的概念,是一种解决决策者对他们的管理策略的反馈的方式和手段。它的最终目的是帮助管理者从复杂的环境中筛选最优的解决方案。收敛性分析一般情况下会结合一些概念,例如实验研究,不确定性的分析,以及特定的决策环境,来解决特定问题。收敛性分析旨在帮助决策者认识和理解给定决策情境内的系统性知识组合。它由一系列步骤组成,从分析现有系
- 套材下料决策变量matlab,线材下料问题——目标函数的一个注记
weixin_39609822
套材下料决策变量matlab
一、问题的提出“线材下料问题”是运筹学在实际应用中比较经典的问题,特别在建筑生产活动中,涉及大量的线材下料问题。因此,确定既节省原材料,又可行的线材下料的方法,在实际应用中有着重要的意义。该问题的一般提法:要做n套产品,需要用规格不同的m种线材,各种规格的长度分别为:l1,l2…lm,每一套产品需用不同规格的原料分别为:m1,m2…mm根,己知原材料的长度为l,问应如何下料,使所用的原材料最省?二
- c语言程序ising算法,算法及编程语言 - 声振论坛 - 振动,动力学,声学,信号处理,故障诊断 - Powered by Discuz!...
什么斯坦
c语言程序ising算法
给一下该书的详细信息吧《运筹学基础》作者:张莹出版社:清华大学出版社出版日期:版次:ISBN:730201669页数:311开本:16开包装:平装原价:¥24.0本书包括运筹学中最基本、应用最广泛的七个部分:线性规划、整数规划、目标规划、非线性规划、动态规划、图与网络分析、决策分析。其中以线性规划、非线性规划为重点。全书七部分共详细介绍了50余种实用算法,配有近百个不同类型、不同解法的例题,还有结
- 运筹学——线性规划
枠成
运筹学数学建模其他
仅供自学使用,各位观众自行参考Reference:中国大学mooc管理运筹学韩伯棠https://wenku.baidu.com/view/2e7891961a37f111f1855b46.html#https://zhuanlan.zhihu.com/p/104697552目录线性规划步骤:主要应用:单纯性法求目标函数值最小的线性规划问题解的最终结果情况单纯形法的灵敏度分析python求解线性规
- 运筹学代码基础(python)
CCC_bi
程序题解法python开发语言
运筹学基础python基础操作字典线性规划问题求解例题建模问题的矩阵表示决策变量取值受限0和1最小生成树问题最小路径问题python基础操作加减法和输出0p1=987654321p2=123456789print(p1+
- 【运筹学】第4讲 线性代数基础
冰岛看极光_92655
运筹学线性代数数学建模
【运筹学】第4讲线性代数基础一、研究线性代数目的1、目的:解线性方程(未知数次数为1的方程)2、n元方程组的推广过程3、n元方程组研究步骤二、关于方程的经典想法(几何)三、方法论四、怎么看待矩阵1、秩是矩阵的本质属性2、一个矩阵的秩是唯一的3、引入运筹学中`【基】`的概念4、矩阵的逆五、行列式1、行列式2、几何意义3、行列式回归成矩阵笔记来源:b站王树尧SJTU本节主要对线性代数整体的研究思路(矩
- 排队论 | Python实现M/M/1/N
算法如诗
排队论(QueuingTheory)M/M/1/N
文章目录概述代码概述排队论(Queueingtheory)是研究排队系统的数学理论,用于描述和分析顾客到达、排队、服务和离开等过程。它是运筹学和应用概率论的重要分支,广泛应用于交通、通信、计算机网络、制造业、客户服务等领域。在排队论中,常用的术语包括以下几个方面ÿ
- 优化|运筹学应用之顶刊Operations Research论文综述(68(6)期)
「已注销」
优化人工智能计算机视觉深度学习
作者:陈宇文(牛津大学在读博士)翁欣(清华大学在读博士)SimpleBayesianAlgorithmsforBest-ArmIdentificationIn“SimpleBayesianAlgorithmsforBest-ArmIdentification,”Russoconsiderstheoptimaladaptiveallocationofmeasurementeffortforident
- AHP层次分析法
亦旧sea
人工智能算法机器学习
AHP层次分析法(AnalyticHierarchyProcess)是一种用于多准则决策的数学模型和过程。它被广泛应用于管理科学和运筹学领域,用于处理复杂的决策问题。AHP层次分析法通过将决策问题分解为多个层次结构,并对每个层次的准则和选择进行比较和评价。它基于人们在处理决策问题时的直觉和判断,通过对准则和选择进行定量和定性的比较,最终得出最优的决策。AHP层次分析法包括以下步骤:1.构建层次结构
- 层次分析法(内含python完整代码)
者半
算法
背景:(评价决策类)日常生活中有很多的决策问题。决策是指在面临多种方案时需要依据一定的标准选择某一种方案买衣服,一般要依据质量、颜色、价格、款式等方面的因素选择概念:层次分析法(AnalyticHierarchyProcess,简称AHP)是对一些较为复杂、较为模糊的问题作出决策的简易方法,它特别适用于那些难于完全定量分析的问题。它是美国运筹学家T.L.Saaty教授于上世纪70年代初期提出的一种
- DP(动态规划)是什么?
YoungGeeker
算法#C/C++后端动态规划算法数据结构
目录DP是什么?DP的原理概念引入基本思想基本概念动态规划问题中的术语基本结构适用条件最优化原理(最优子结构性质)无后效性子问题的重叠性DP是什么?动态规划(DynamicProgramming,DP)是运筹学的一个分支,是求解决策过程最优化的过程。20世纪50年代初,美国数学家贝尔曼(R.Bellman)等人在研究多阶段决策过程的优化问题时,提出了著名的最优化原理,从而创立了动态规划。动态规划的
- [黑洞与暗粒子]没有光的世界
comsci
无论是相对论还是其它现代物理学,都显然有个缺陷,那就是必须有光才能够计算
但是,我相信,在我们的世界和宇宙平面中,肯定存在没有光的世界....
那么,在没有光的世界,光子和其它粒子的规律无法被应用和考察,那么以光速为核心的
&nbs
- jQuery Lazy Load 图片延迟加载
aijuans
jquery
基于 jQuery 的图片延迟加载插件,在用户滚动页面到图片之后才进行加载。
对于有较多的图片的网页,使用图片延迟加载,能有效的提高页面加载速度。
版本:
jQuery v1.4.4+
jQuery Lazy Load v1.7.2
注意事项:
需要真正实现图片延迟加载,必须将真实图片地址写在 data-original 属性中。若 src
- 使用Jodd的优点
Kai_Ge
jodd
1. 简化和统一 controller ,抛弃 extends SimpleFormController ,统一使用 implements Controller 的方式。
2. 简化 JSP 页面的 bind, 不需要一个字段一个字段的绑定。
3. 对 bean 没有任何要求,可以使用任意的 bean 做为 formBean。
使用方法简介
- jpa Query转hibernate Query
120153216
Hibernate
public List<Map> getMapList(String hql,
Map map) {
org.hibernate.Query jpaQuery = entityManager.createQuery(hql);
if (null != map) {
for (String parameter : map.keySet()) {
jp
- Django_Python3添加MySQL/MariaDB支持
2002wmj
mariaDB
现状
首先,
[email protected] 中默认的引擎为 django.db.backends.mysql 。但是在Python3中如果这样写的话,会发现 django.db.backends.mysql 依赖 MySQLdb[5] ,而 MySQLdb 又不兼容 Python3 于是要找一种新的方式来继续使用MySQL。 MySQL官方的方案
首先据MySQL文档[3]说,自从MySQL
- 在SQLSERVER中查找消耗IO最多的SQL
357029540
SQL Server
返回做IO数目最多的50条语句以及它们的执行计划。
select top 50
(total_logical_reads/execution_count) as avg_logical_reads,
(total_logical_writes/execution_count) as avg_logical_writes,
(tot
- spring UnChecked 异常 官方定义!
7454103
spring
如果你接触过spring的 事物管理!那么你必须明白 spring的 非捕获异常! 即 unchecked 异常! 因为 spring 默认这类异常事物自动回滚!!
public static boolean isCheckedException(Throwable ex)
{
return !(ex instanceof RuntimeExcep
- mongoDB 入门指南、示例
adminjun
javamongodb操作
一、准备工作
1、 下载mongoDB
下载地址:http://www.mongodb.org/downloads
选择合适你的版本
相关文档:http://www.mongodb.org/display/DOCS/Tutorial
2、 安装mongoDB
A、 不解压模式:
将下载下来的mongoDB-xxx.zip打开,找到bin目录,运行mongod.exe就可以启动服务,默
- CUDA 5 Release Candidate Now Available
aijuans
CUDA
The CUDA 5 Release Candidate is now available at http://developer.nvidia.com/<wbr></wbr>cuda/cuda-pre-production. Now applicable to a broader set of algorithms, CUDA 5 has advanced fe
- Essential Studio for WinRT网格控件测评
Axiba
JavaScripthtml5
Essential Studio for WinRT界面控件包含了商业平板应用程序开发中所需的所有控件,如市场上运行速度最快的grid 和chart、地图、RDL报表查看器、丰富的文本查看器及图表等等。同时,该控件还包含了一组独特的库,用于从WinRT应用程序中生成Excel、Word以及PDF格式的文件。此文将对其另外一个强大的控件——网格控件进行专门的测评详述。
网格控件功能
1、
- java 获取windows系统安装的证书或证书链
bewithme
windows
有时需要获取windows系统安装的证书或证书链,比如说你要通过证书来创建java的密钥库 。
有关证书链的解释可以查看此处 。
public static void main(String[] args) {
SunMSCAPI providerMSCAPI = new SunMSCAPI();
S
- NoSQL数据库之Redis数据库管理(set类型和zset类型)
bijian1013
redis数据库NoSQL
4.sets类型
Set是集合,它是string类型的无序集合。set是通过hash table实现的,添加、删除和查找的复杂度都是O(1)。对集合我们可以取并集、交集、差集。通过这些操作我们可以实现sns中的好友推荐和blog的tag功能。
sadd:向名称为key的set中添加元
- 异常捕获何时用Exception,何时用Throwable
bingyingao
用Exception的情况
try {
//可能发生空指针、数组溢出等异常
} catch (Exception e) {
 
- 【Kafka四】Kakfa伪分布式安装
bit1129
kafka
在http://bit1129.iteye.com/blog/2174791一文中,实现了单Kafka服务器的安装,在Kafka中,每个Kafka服务器称为一个broker。本文简单介绍下,在单机环境下Kafka的伪分布式安装和测试验证 1. 安装步骤
Kafka伪分布式安装的思路跟Zookeeper的伪分布式安装思路完全一样,不过比Zookeeper稍微简单些(不
- Project Euler
bookjovi
haskell
Project Euler是个数学问题求解网站,网站设计的很有意思,有很多problem,在未提交正确答案前不能查看problem的overview,也不能查看关于problem的discussion thread,只能看到现在problem已经被多少人解决了,人数越多往往代表问题越容易。
看看problem 1吧:
Add all the natural num
- Java-Collections Framework学习与总结-ArrayDeque
BrokenDreams
Collections
表、栈和队列是三种基本的数据结构,前面总结的ArrayList和LinkedList可以作为任意一种数据结构来使用,当然由于实现方式的不同,操作的效率也会不同。
这篇要看一下java.util.ArrayDeque。从命名上看
- 读《研磨设计模式》-代码笔记-装饰模式-Decorator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.io.BufferedOutputStream;
import java.io.DataOutputStream;
import java.io.FileOutputStream;
import java.io.Fi
- Maven学习(一)
chenyu19891124
Maven私服
学习一门技术和工具总得花费一段时间,5月底6月初自己学习了一些工具,maven+Hudson+nexus的搭建,对于maven以前只是听说,顺便再自己的电脑上搭建了一个maven环境,但是完全不了解maven这一强大的构建工具,还有ant也是一个构建工具,但ant就没有maven那么的简单方便,其实简单点说maven是一个运用命令行就能完成构建,测试,打包,发布一系列功
- [原创]JWFD工作流引擎设计----节点匹配搜索算法(用于初步解决条件异步汇聚问题) 补充
comsci
算法工作PHP搜索引擎嵌入式
本文主要介绍在JWFD工作流引擎设计中遇到的一个实际问题的解决方案,请参考我的博文"带条件选择的并行汇聚路由问题"中图例A2描述的情况(http://comsci.iteye.com/blog/339756),我现在把我对图例A2的一个解决方案公布出来,请大家多指点
节点匹配搜索算法(用于解决标准对称流程图条件汇聚点运行控制参数的算法)
需要解决的问题:已知分支
- Linux中用shell获取昨天、明天或多天前的日期
daizj
linuxshell上几年昨天获取上几个月
在Linux中可以通过date命令获取昨天、明天、上个月、下个月、上一年和下一年
# 获取昨天
date -d 'yesterday' # 或 date -d 'last day'
# 获取明天
date -d 'tomorrow' # 或 date -d 'next day'
# 获取上个月
date -d 'last month'
#
- 我所理解的云计算
dongwei_6688
云计算
在刚开始接触到一个概念时,人们往往都会去探寻这个概念的含义,以达到对其有一个感性的认知,在Wikipedia上关于“云计算”是这么定义的,它说:
Cloud computing is a phrase used to describe a variety of computing co
- YII CMenu配置
dcj3sjt126com
yii
Adding id and class names to CMenu
We use the id and htmlOptions to accomplish this. Watch.
//in your view
$this->widget('zii.widgets.CMenu', array(
'id'=>'myMenu',
'items'=>$this-&g
- 设计模式之静态代理与动态代理
come_for_dream
设计模式
静态代理与动态代理
代理模式是java开发中用到的相对比较多的设计模式,其中的思想就是主业务和相关业务分离。所谓的代理设计就是指由一个代理主题来操作真实主题,真实主题执行具体的业务操作,而代理主题负责其他相关业务的处理。比如我们在进行删除操作的时候需要检验一下用户是否登陆,我们可以删除看成主业务,而把检验用户是否登陆看成其相关业务
- 【转】理解Javascript 系列
gcc2ge
JavaScript
理解Javascript_13_执行模型详解
摘要: 在《理解Javascript_12_执行模型浅析》一文中,我们初步的了解了执行上下文与作用域的概念,那么这一篇将深入分析执行上下文的构建过程,了解执行上下文、函数对象、作用域三者之间的关系。函数执行环境简单的代码:当调用say方法时,第一步是创建其执行环境,在创建执行环境的过程中,会按照定义的先后顺序完成一系列操作:1.首先会创建一个
- Subsets II
hcx2013
set
Given a collection of integers that might contain duplicates, nums, return all possible subsets.
Note:
Elements in a subset must be in non-descending order.
The solution set must not conta
- Spring4.1新特性——Spring缓存框架增强
jinnianshilongnian
spring4
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- shell嵌套expect执行命令
liyonghui160com
一直都想把expect的操作写到bash脚本里,这样就不用我再写两个脚本来执行了,搞了一下午终于有点小成就,给大家看看吧.
系统:centos 5.x
1.先安装expect
yum -y install expect
2.脚本内容:
cat auto_svn.sh
#!/bin/bash
- Linux实用命令整理
pda158
linux
0. 基本命令 linux 基本命令整理
1. 压缩 解压 tar -zcvf a.tar.gz a #把a压缩成a.tar.gz tar -zxvf a.tar.gz #把a.tar.gz解压成a
2. vim小结 2.1 vim替换 :m,ns/word_1/word_2/gc  
- 独立开发人员通向成功的29个小贴士
shoothao
独立开发
概述:本文收集了关于独立开发人员通向成功需要注意的一些东西,对于具体的每个贴士的注解有兴趣的朋友可以查看下面标注的原文地址。
明白你从事独立开发的原因和目的。
保持坚持制定计划的好习惯。
万事开头难,第一份订单是关键。
培养多元化业务技能。
提供卓越的服务和品质。
谨小慎微。
营销是必备技能。
学会组织,有条理的工作才是最有效率的。
“独立
- JAVA中堆栈和内存分配原理
uule
java
1、栈、堆
1.寄存器:最快的存储区, 由编译器根据需求进行分配,我们在程序中无法控制.2. 栈:存放基本类型的变量数据和对象的引用,但对象本身不存放在栈中,而是存放在堆(new 出来的对象)或者常量池中(字符串常量对象存放在常量池中。)3. 堆:存放所有new出来的对象。4. 静态域:存放静态成员(static定义的)5. 常量池:存放字符串常量和基本类型常量(public static f