5 10 0 1 1 2 1 3 1 4 0 2 2 3 0 4 0 3 3 4 2 4
1 1 1 2 2 2 2 3 4 5HintThe graph given in sample input is a complete graph, that each pair of vertex has an edge connecting them, so there's only 1 connected block at first. The first 3 lines of output are 1s because after deleting the first 3 edges of the graph, all vertexes still connected together. But after deleting the first 4 edges of the graph, vertex 1 will be disconnected with other vertex, and it became an independent connected block. Continue deleting edges the disconnected blocks increased and finally it will became the number of vertex, so the last output should always be N.
题目大意:给定一个无向图,删除前k条边(1<=k<=m),求联通分量的个数?
感觉做过类似的。。。很快就想到倒着处理,就可以利用并查集写了
#include <cstdio> #include <cstring> using namespace std; const int MAXN=10005; int par[MAXN],ps,pe,n,m; int s[100005],e[100005],ans[100005]; int getPar(int a) { if(par[a]==a) return a; return par[a]=getPar(par[a]); } int main(){ while(2==scanf("%d%d",&n,&m)) { for(int i=0;i<n;++i) { par[i]=i; } for(int i=0;i<m;++i) { scanf("%d%d",s+i,e+i); } ans[m]=n; for(int i=m-1;i>0;--i) { ps=getPar(s[i]); pe=getPar(e[i]); ans[i]=ans[i+1]; if(ps!=pe) {//如果他们不在同一个联通分量 --ans[i]; par[pe]=ps; } } for(int i=1;i<=m;++i) { printf("%d\n",ans[i]); } } return 0; }