- 2022 年 9 月青少年软编等考 C 语言三级真题解析
南朔 Clancy
青少年软编等考C语言题解集(三级)c语言开发语言c++算法青少年编程题解学习
目录T1.课程冲突T2.42点思路分析T3.最长下坡思路分析T4.吃糖果思路分析T5.放苹果思路分析T1.课程冲突此题为2021年9月三级第一题原题,见2021年9月青少年软编等考C语言三级真题解析中的T1。T2.42点424242是:组合数学上的第555个卡特兰数字符'*'的ASCII\ttASCIIASCII码钼的原子序数666与999的乘积结果的131313进制表示生命、宇宙以及任何事情的终
- 3 > 数据结构与算法 栈与队列
irisart
数据结构与算法(C语言考研期末复习版)c语言数据结构
概览本节总结了栈和队列的基本概念和用法,另外附上栈与队列的基本操作代码(C语言版)。本节适合有C语言基础的初学者、期末复习、考研等方面的用途。栈只允许在一端插入和删除操作的线性表。代码如下特点:先进后出模式(LIFO),只能在栈顶操作。什么是卡特兰数:有n个元素进栈(顺序可以不同),出栈元素不同的排列个数为1n+1C2nn\frac{1}{n+1}C^n_{2n}n+11C2nn。共享栈:两个栈共
- 出栈序列问题——卡特兰数
tanactor
c++刷题c++算法
大家新年快乐啊!!!(^_^)最近在刷题时遇见了这个题是一个关于出栈方案的简单递归问题后来Deepseek了一下才知道该题的背景故留存在此供自己以后查阅以下是关于卡特兰数的相关内容:什么是卡特兰数?卡特兰数(CatalanNumber)是一系列在组合数学中经常出现的自然数。卡特兰数的第n项(记作cn表示许多组合问题的解的数量。卡特兰数的前几项为:C0=1,C1=1,C2=2,C3=5,C4=14,
- 数据结构—栈与队列【顺序存储、链式存储、卡特兰数、优先级队列】
多多钟意你吖
阶段一:数据结构数据结构java算法
个人网站:路遥叶子版权:本文由【路遥叶子】原创、在CSDN首发、需要转载请联系博主如果文章对你有帮助、欢迎关注、点赞、收藏(一键三连)和订阅专栏哦想寻找共同成长的小伙伴,请点击【Java全栈开发社区】目录第三章:栈与队列(一)栈、队列和线性表有什么区别?(二)栈一、什么是栈?栈又有什么特性?二、栈都有那些术语操作?三、对于四个元素ABCD它们的出栈的序列有多少种呢?四、卡特兰数五、栈的抽象数据类型
- 根据序列推出不同二叉树的个数
ZYT_庄彦涛
数据结构数据结构栈序列
先序序列为a,b,c,d的不同二叉树的个数是()A.13B.14C.15D.16他们有一个卡特兰数公式,就是这么解的:,所以选B上面为正确答案,下面是我个人的理解,不保证正确:对这道题我说一下我的理解。它这个是要确定它的不同的二叉树的个数,所以我们要先了解怎么确定自己画出来的其中一个二叉树算是一个,那么将这些二叉树统计起来就是我们要的答案。那么怎么确定某个二叉树就算一个呢?题目给了我们先序序列,那
- 组合数 与卡特兰数
海风许愿
Acm算法c++算法数据结构c++
组合数与卡特兰数1a,b比较小时采用预处理方法,提前将所有的组合数都算出来,到时候直接查表采用的公式是C(a,b)=C(a-1,b)+C(a-1,b-1)原题链接:885.求组合数I-AcWing题库核心代码:for(inti=0;i=1e5时,显然已经不能直接开二维数组打表了,这样会爆数组但是我们可以开两个一维数组,一个存取i的阶乘,一个存取i阶乘的逆元我们可以直接从定义出发C(a,b)=a!/
- [leetcode] 22. 括号生成
会飞的大鱼人
leetcode算法dfs数据结构
文章目录题目描述解题方法方法一:dfs遍历java代码方法二:按照卡特兰数的思路递归求出有效括号组合java代码相似题目题目描述数字n代表生成括号的对数,请你设计一个函数,用于能够生成所有可能的并且有效的括号组合。示例1:输入:n=3输出:["((()))","(()())","(())()","()(())","()()()"]示例2:输入:n=1输出:["()"]提示:1generatePar
- C++ 数论相关题目:卡特兰数应用、快速幂求组合数。满足条件的01序列
伏城无嗔
数论力扣算法笔记c++算法
给定n个0和n个1,它们将按照某种顺序排成长度为2n的序列,求它们能排列成的所有序列中,能够满足任意前缀序列中0的个数都不少于1的个数的序列有多少个。输出的答案对109+7取模。输入格式共一行,包含整数n。输出格式共一行,包含一个整数,表示答案。数据范围1≤n≤105输入样例:3输出样例:5上述描述了本题的公式推导,最终也就是求一个卡特兰数。本题中,求逆元取模的是一个质数,可以用快速幂来求,如果不
- 【数据结构】(C语言版)第三章:栈和队列
_popo_
#数据结构
文章目录一、栈1.顺序栈2.共享栈3.链栈4.练习题二、队列1.顺序存储2.链式存储3.双端队列4.练习题三、栈和队列的应用1.栈在括号匹配时的应用2.栈在表达式求值中的应用3.栈在递归时的应用4.队列——树的层次遍历5.队列——图的层次遍历6.队列——操作系统应用四、特殊矩阵1.压缩存储2.稀疏矩阵一、栈概念:先进后出不同的出栈序列的个数:(卡特兰数)基操:InitStack(&S);//初始化
- 卡特兰数
wean_a23e
之前看算法导论时,讲了给定几个数字,能构造出几种二叉树,当时只想到排列组合的解决方法,极其复杂又不好记,过段时间还忘了。。。。今天看大牛的文章,评论有人提及卡特兰数,了解后才知道这么优雅的解决思路。。卡特兰数前几项卡特兰数前几项为1,2,5,14,42,132,429,1430,4862,16796,58786,208012,742900,2674440,9694845,35357670,1296
- 卡特兰数
徐子尧
找工作
https://blog.csdn.net/wu_tongtong/article/details/78161211https://blog.csdn.net/wuzhekai1985/article/details/6764858/
- c语言程序设计卡特兰数问题,卡特兰数(Catalan)公式、证明、代码、典例
许小晴
c语言程序设计卡特兰数问题
大佬博客:传送门组合数公式:一、关于卡特兰数卡特兰数是一种经典的组合数,经常出现在各种计算中,其前几项为:1,2,5,14,42,132,429,1430,4862,16796,58786,208012,742900,2674440,9694845,35357670,129644790,477638700,1767263190,6564120420,24466267020,91482563640,
- c语言程序设计卡特兰数问题,求解圆上2N个点的连线问题(卡特兰数)
2063650662
c语言程序设计卡特兰数问题
题目描述圆上有2n个不同的点,两点之间连成直线段,要求这些线段不能共点.计算出有12个点时共有多少种不同的连线方式.设计C语言函数,intcount(intn),计算并返回圆上有2n个点时的连线方式数量.分析我们可以使用递归的思想来求解这道题.设2n个节点的连线方法种数为(F(n)).如上图(这里取n=4),不妨给所有的点进行编号,然后我们分析第一个节点,发现从1号节点出发可以分为两种情况:第一种
- 什么是卡特兰数及卡特兰数公式推导
wuxiaopengnihao1
sqlite
什么是卡特兰数?明安图数,又称卡塔兰数,英文名Catalannumber,是组合数学中一个常出现于各种计数问题中的数列。以中国蒙古族数学家明安图(1692-1763)和比利时的数学家欧仁·查理·卡塔兰(1814–1894)的名字来命名,其前几项为(从第零项开始):1,1,2,5,14,42,132,429,1430,4862,…卡特兰数的几何意义简单来说,卡特兰数就是一个有规律的数列,在坐标图中可
- 卡特兰数~
qssssss79
算法java开发语言
摘dalao:Ypuyu、长满石楠的荒原卡特兰数是组合数学中一个常在各种计数问题中出现的数列。以比利时的数学家欧仁·查理·卡塔兰(1814–1894)命名。历史上,清代数学家明安图(1692年-1763年)在其《割圜密率捷法》最早用到“卡塔兰数”,远远早于卡塔兰。有中国学者建议将此数命名为“明安图数”或“明安图-卡塔兰数”。即卡特兰数是符合以下公式的一个数列!公式(常见4个):h(n)=h(0)*
- 卡特兰数列编程实现
阿桑-
数据结构与算法
卡特兰(Catalan)数列典型特征有一类如下:1.可以分为两列2.每行从左向右依次递增(减),每列从上向下依次递增(减)/*2-10标准二维表问题问题为:设n是一个正整数。2*n的标准二维表是由正整数1,2,…2n组成的2*n数组,该数组的每行从左到右递增,每列从上到下递增。把数字从小到大进行排序,用0表示对应的数字在第一排,用1表示对应的数字在第二排,那么含有n个0,n个1的序列,就对应一种方
- 卡特兰数列
小宋想站起来
ACM常用序列
卡特兰数列的递推公式如下:h(n)=h(0)*h(n-1)+h(1)*h(n-2)+...+h(n-1)h(0)(n>=2)例如:h(2)=h(0)*h(1)+h(1)*h(0)=1*1+1*1=2h(3)=h(0)*h(2)+h(1)*h(1)+h(2)*h(0)=1*2+1*1+2*1=5另类递推式:h(n)=h(n-1)*(4*n-2)/(n+1);递推关系的解为:h(n)=C(2n,n)/
- 低配版catalan数(算法)(C语言)
兮于怀
卡特兰数:n个节点最多可组成多少个形态不同的二叉树?n节车厢出栈的可能排列方式有多少种?#includeintmain(){intn;scanf("%d",&n);longlongintt=1,j=2*n;longlonginta,b,i,s=1;for(i=1;i<=n;i++){t=t*j;j--;}for(i=1;i<=n;i++){s=s*i;}a=t/s;b=a/(n+1);printf
- C++实现——卡特兰数列及其应用
浪漫硅谷
algorithm卡特兰数列
/*卡特兰数列的原理及其应用场景令h(1)=1,catalan数满足递归式:h(n)=h(1)*h(n-1)+h(2)*h(n-2)+…+h(n-1)h(1)(其中n>=2)该递推关系的解为:h(n)=c(2n-2,n-1)/n(n=1,2,3,…)1,1,2,5,14,42,132,429,1430,4862,16796,58786,208012,742900,2674440,9694845,3
- C++题目:卡特兰数
SunnyLi1106
C++基础经典例题c++
卡特兰数题目描述这里有一个经典的组合计数问题(这是2009年全国高中数学联赛河北省预赛试题):101010个人去买票,其中555个人每人只有五元纸币一张,另外555个人每人只有十元纸币一张。售票处初始的时候没有任何零钱。如果只关心每个人的持有的纸币面值(例如,持有五元纸币的人视作相同的),那么这些人有几种来买票的先后顺序,使售票处总能顺利找零。这个问题与“从正方网格中,从左下角走最短路到右上角,但
- C++卡特兰数
SkeletonKing233
C++算法卡特兰数
卡特兰数简介卡特兰数又称卡塔兰数,卡特兰数是组合数学中一个常出现在各种计数问题中的数列。以比利时的数学家欧仁·查理·卡塔兰(1814–1894)的名字来命名。但最早是欧拉在1753年解决凸包划分成三角形问题的时候,推出的Catalan数。初始值:f(0)=f(1)=1递推公式:f(n)=f(0)*f(n-1)+f(1)*f(n-2)+……+f(n-1)*f(0)解决的问题:括号化:P=a1×a2×
- 关于出栈序列的解法总结及卡特兰数的学习(C语言)
紫炁
算法dfs
出栈次序一个栈(无穷大)的进栈序列为1,2,3,…,n,有多少个不同的出栈序列?解法1——递归/记忆化搜索考虑用一个二维数组f[i][j]模拟当前情况:i——进栈序列中还有i个待排的数,j——栈中有j个数,f[i][j]的值表示当前i,j情况下有几种输出方案。首先如果f[i][j]有值,直接调用即可(记忆化搜索,节省时间);如果i=0,即序列全部入栈,只有一种输出方法,所以返回1;考虑一般情况,有
- C#,卡特兰数(Catalan number,明安图数)的算法源代码
深度混淆
C#算法演义AlgorithmRecipesC#卡塔兰数入门教程
一、概要卡特兰数(英语:Catalannumber),又称卡塔兰数、明安图数,是组合数学中一种常出现于各种计数问题中的数列。以比利时的数学家欧仁·查理·卡特兰的名字来命名。1730年左右被蒙古族数学家明安图使用于对三角函数幂级数的推导而首次发现,1774年被发表在《割圜密率捷法》。二、卡特兰数的历史1730年,中国清代蒙古族数学家明安图比卡特兰更早使用了卡特兰数,在发现三角函数幂级数的过程中,见《
- 算法学习总结
joker D888
算法与数据结构算法c++ACM数据结构
算法总结文章目录算法总结搜索遍历dfs树的深度树的重心图的连通块划分bfs双端队列bfsbfs图问题迭代加深双向搜索A*IDA*Morris遍历Manacher数论质数判断质数分解质因数埃氏筛法线性筛法约数求N的正约数集合——试除法求1~N每个数的正约数集合——倍除法欧拉函数快速幂快速幂求逆元扩展欧几里得算法斐蜀定理扩展欧几里得算法线性同余方程中国剩余定理卡特兰数低阶数据结构链表邻接表AVL树单调
- Catalan(卡特兰)数
丶lemon7
数据结构
二叉搜索树概念:介绍卡特兰数之前先来了解一些二叉搜索树的概念。比如有一棵树,它根节点比左边节点要大,比右边节点要小,这样的树就称为二叉搜索树。如下图所示:卡特兰数:我们把n个节点所能组成的不同二叉搜索树的个数称为卡特兰数(Catalan数)。接下来我们来看一下不同的卡特兰数是怎么计算出来的。卡特兰数分析:我们把C(n)记为卡特兰数,当节点数为1时,只能组成一种二叉搜索树,因此C(1)=1。C(2)
- AcWing 889. 满足条件的01序列(卡特兰数应用)
ˇasushiro
AcWing算法笔记
满足条件的01序列假设长度为n个序列要求满足题意1的前缀0的个数不能超过1的个数将问题抽象为从(0,0)到(n,n)向上走一个代表这一步对应序列中的值是1,向右走代表序列中的值是0要想满足1的前缀0的数量大于1的数量就需要满足所有路过的途径在y=x这个函数个下面但是如何表达呢?我们采用所有到(n,n)的方案的集合减去越过y=x+1这个直线的方案集合因为越过y=x+1这个直线的方案集合可以表示为从(
- 栈出栈序列问题的探究与思考(卡特兰数)
Pigwantofly
基本算法数据结构与算法算法c++数据结构
目录一、引入二、朴素算法三、卡特兰数的介绍四、卡特兰数的实现1.递推实现卡特兰数2.组合数法实现卡特兰数五、结语一、引入初学数据结构与算法,学到栈的时候,总是会遇到这样一类问题,设输入序列为1,2,3,则经过栈的作用后可以得到()中不同的输出序列。接着就开始一直在想,谁入栈,谁出栈,数字少还好,但数字一多起来,我就开始出现遗漏和重复,所以我只想有没有一种方法,或是说一种公式,可以让我在计算诸如此类
- C++混合笔记
ltl1
笔记c++笔记算法
目录先上一波最短路模板:Dijkstra朴素:(链式前向星)Dijkstra堆优化:(链式前向星)SPFA:Bellman_ford1:Trie2.并查集组合数原公式:组合数公式:编辑逆元预处理来求:在编辑可用代码:组合数卢卡斯定理:代码:卡特兰数:编辑01背包转移方程:01背包注意事项:01背包代码:01背包空间优化版(滚动数组):时间复杂度:编辑完全背包转移方程:完全背包变量意思:完全背包朴素
- 求组合数的四种方法以及卡特兰数
2301_78981471
算法学习记录算法笔记c++
文章目录组合数范围较小&&模量一定方法-递推法思路时间复杂度分析AcWing885.求组合数ICODE组合数范围较大&&模量一定方法-快速幂时间复杂度分析AcWing886.求组合数IICODE组合数范围爆大&&模量不定方法-Lucas定理时间复杂度分析AcWing887.求组合数IIICODE组合数范围爆大&&没有模量方法-线性筛+高精度时间复杂度分析AcWing888.求组合数IVCODE卡特
- 洛谷P1722 矩阵Ⅱ——卡特兰数
louisdlee.
洛谷深入浅出进阶篇c++组合数学
传送门:P1722矩阵II-洛谷|计算机科学教育新生态(luogu.com.cn)https://www.luogu.com.cn/problem/P1722用不需要除任何数的公式来求。#define_CRT_SECURE_NO_WARNINGS#include#include#include#include#include#include#include#include#include#incl
- ViewController添加button按钮解析。(翻译)
张亚雄
c
<div class="it610-blog-content-contain" style="font-size: 14px"></div>// ViewController.m
// Reservation software
//
// Created by 张亚雄 on 15/6/2.
- mongoDB 简单的增删改查
开窍的石头
mongodb
在上一篇文章中我们已经讲了mongodb怎么安装和数据库/表的创建。在这里我们讲mongoDB的数据库操作
在mongo中对于不存在的表当你用db.表名 他会自动统计
下边用到的user是表明,db代表的是数据库
添加(insert):
- log4j配置
0624chenhong
log4j
1) 新建java项目
2) 导入jar包,项目右击,properties—java build path—libraries—Add External jar,加入log4j.jar包。
3) 新建一个类com.hand.Log4jTest
package com.hand;
import org.apache.log4j.Logger;
public class
- 多点触摸(图片缩放为例)
不懂事的小屁孩
多点触摸
多点触摸的事件跟单点是大同小异的,上个图片缩放的代码,供大家参考一下
import android.app.Activity;
import android.os.Bundle;
import android.view.MotionEvent;
import android.view.View;
import android.view.View.OnTouchListener
- 有关浏览器窗口宽度高度几个值的解析
换个号韩国红果果
JavaScripthtml
1 元素的 offsetWidth 包括border padding content 整体的宽度。
clientWidth 只包括内容区 padding 不包括border。
clientLeft = offsetWidth -clientWidth 即这个元素border的值
offsetLeft 若无已定位的包裹元素
- 数据库产品巡礼:IBM DB2概览
蓝儿唯美
db2
IBM DB2是一个支持了NoSQL功能的关系数据库管理系统,其包含了对XML,图像存储和Java脚本对象表示(JSON)的支持。DB2可被各种类型的企 业使用,它提供了一个数据平台,同时支持事务和分析操作,通过提供持续的数据流来保持事务工作流和分析操作的高效性。 DB2支持的操作系统
DB2可应用于以下三个主要的平台:
工作站,DB2可在Linus、Unix、Windo
- java笔记5
a-john
java
控制执行流程:
1,true和false
利用条件表达式的真或假来决定执行路径。例:(a==b)。它利用条件操作符“==”来判断a值是否等于b值,返回true或false。java不允许我们将一个数字作为布尔值使用,虽然这在C和C++里是允许的。如果想在布尔测试中使用一个非布尔值,那么首先必须用一个条件表达式将其转化成布尔值,例如if(a!=0)。
2,if-els
- Web开发常用手册汇总
aijuans
PHP
一门技术,如果没有好的参考手册指导,很难普及大众。这其实就是为什么很多技术,非常好,却得不到普遍运用的原因。
正如我们学习一门技术,过程大概是这个样子:
①我们日常工作中,遇到了问题,困难。寻找解决方案,即寻找新的技术;
②为什么要学习这门技术?这门技术是不是很好的解决了我们遇到的难题,困惑。这个问题,非常重要,我们不是为了学习技术而学习技术,而是为了更好的处理我们遇到的问题,才需要学习新的
- 今天帮助人解决的一个sql问题
asialee
sql
今天有个人问了一个问题,如下:
type AD value
A  
- 意图对象传递数据
百合不是茶
android意图IntentBundle对象数据的传递
学习意图将数据传递给目标活动; 初学者需要好好研究的
1,将下面的代码添加到main.xml中
<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http:/
- oracle查询锁表解锁语句
bijian1013
oracleobjectsessionkill
一.查询锁定的表
如下语句,都可以查询锁定的表
语句一:
select a.sid,
a.serial#,
p.spid,
c.object_name,
b.session_id,
b.oracle_username,
b.os_user_name
from v$process p, v$s
- mac osx 10.10 下安装 mysql 5.6 二进制文件[tar.gz]
征客丶
mysqlosx
场景:在 mac osx 10.10 下安装 mysql 5.6 的二进制文件。
环境:mac osx 10.10、mysql 5.6 的二进制文件
步骤:[所有目录请从根“/”目录开始取,以免层级弄错导致找不到目录]
1、下载 mysql 5.6 的二进制文件,下载目录下面称之为 mysql5.6SourceDir;
下载地址:http://dev.mysql.com/downl
- 分布式系统与框架
bit1129
分布式
RPC框架 Dubbo
什么是Dubbo
Dubbo是一个分布式服务框架,致力于提供高性能和透明化的RPC远程服务调用方案,以及SOA服务治理方案。其核心部分包含: 远程通讯: 提供对多种基于长连接的NIO框架抽象封装,包括多种线程模型,序列化,以及“请求-响应”模式的信息交换方式。 集群容错: 提供基于接
- 那些令人蛋痛的专业术语
白糖_
springWebSSOIOC
spring
【控制反转(IOC)/依赖注入(DI)】:
由容器控制程序之间的关系,而非传统实现中,由程序代码直接操控。这也就是所谓“控制反转”的概念所在:控制权由应用代码中转到了外部容器,控制权的转移,是所谓反转。
简单的说:对象的创建又容器(比如spring容器)来执行,程序里不直接new对象。
Web
【单点登录(SSO)】:SSO的定义是在多个应用系统中,用户
- 《给大忙人看的java8》摘抄
braveCS
java8
函数式接口:只包含一个抽象方法的接口
lambda表达式:是一段可以传递的代码
你最好将一个lambda表达式想象成一个函数,而不是一个对象,并记住它可以被转换为一个函数式接口。
事实上,函数式接口的转换是你在Java中使用lambda表达式能做的唯一一件事。
方法引用:又是要传递给其他代码的操作已经有实现的方法了,这时可以使
- 编程之美-计算字符串的相似度
bylijinnan
java算法编程之美
public class StringDistance {
/**
* 编程之美 计算字符串的相似度
* 我们定义一套操作方法来把两个不相同的字符串变得相同,具体的操作方法为:
* 1.修改一个字符(如把“a”替换为“b”);
* 2.增加一个字符(如把“abdd”变为“aebdd”);
* 3.删除一个字符(如把“travelling”变为“trav
- 上传、下载压缩图片
chengxuyuancsdn
下载
/**
*
* @param uploadImage --本地路径(tomacat路径)
* @param serverDir --服务器路径
* @param imageType --文件或图片类型
* 此方法可以上传文件或图片.txt,.jpg,.gif等
*/
public void upload(String uploadImage,Str
- bellman-ford(贝尔曼-福特)算法
comsci
算法F#
Bellman-Ford算法(根据发明者 Richard Bellman 和 Lester Ford 命名)是求解单源最短路径问题的一种算法。单源点的最短路径问题是指:给定一个加权有向图G和源点s,对于图G中的任意一点v,求从s到v的最短路径。有时候这种算法也被称为 Moore-Bellman-Ford 算法,因为 Edward F. Moore zu 也为这个算法的发展做出了贡献。
与迪科
- oracle ASM中ASM_POWER_LIMIT参数
daizj
ASMoracleASM_POWER_LIMIT磁盘平衡
ASM_POWER_LIMIT
该初始化参数用于指定ASM例程平衡磁盘所用的最大权值,其数值范围为0~11,默认值为1。该初始化参数是动态参数,可以使用ALTER SESSION或ALTER SYSTEM命令进行修改。示例如下:
SQL>ALTER SESSION SET Asm_power_limit=2;
- 高级排序:快速排序
dieslrae
快速排序
public void quickSort(int[] array){
this.quickSort(array, 0, array.length - 1);
}
public void quickSort(int[] array,int left,int right){
if(right - left <= 0
- C语言学习六指针_何谓变量的地址 一个指针变量到底占几个字节
dcj3sjt126com
C语言
# include <stdio.h>
int main(void)
{
/*
1、一个变量的地址只用第一个字节表示
2、虽然他只使用了第一个字节表示,但是他本身指针变量类型就可以确定出他指向的指针变量占几个字节了
3、他都只存了第一个字节地址,为什么只需要存一个字节的地址,却占了4个字节,虽然只有一个字节,
但是这些字节比较多,所以编号就比较大,
- phpize使用方法
dcj3sjt126com
PHP
phpize是用来扩展php扩展模块的,通过phpize可以建立php的外挂模块,下面介绍一个它的使用方法,需要的朋友可以参考下
安装(fastcgi模式)的时候,常常有这样一句命令:
代码如下:
/usr/local/webserver/php/bin/phpize
一、phpize是干嘛的?
phpize是什么?
phpize是用来扩展php扩展模块的,通过phpi
- Java虚拟机学习 - 对象引用强度
shuizhaosi888
JAVA虚拟机
本文原文链接:http://blog.csdn.net/java2000_wl/article/details/8090276 转载请注明出处!
无论是通过计数算法判断对象的引用数量,还是通过根搜索算法判断对象引用链是否可达,判定对象是否存活都与“引用”相关。
引用主要分为 :强引用(Strong Reference)、软引用(Soft Reference)、弱引用(Wea
- .NET Framework 3.5 Service Pack 1(完整软件包)下载地址
happyqing
.net下载framework
Microsoft .NET Framework 3.5 Service Pack 1(完整软件包)
http://www.microsoft.com/zh-cn/download/details.aspx?id=25150
Microsoft .NET Framework 3.5 Service Pack 1 是一个累积更新,包含很多基于 .NET Framewo
- JAVA定时器的使用
jingjing0907
javatimer线程定时器
1、在应用开发中,经常需要一些周期性的操作,比如每5分钟执行某一操作等。
对于这样的操作最方便、高效的实现方式就是使用java.util.Timer工具类。
privatejava.util.Timer timer;
timer = newTimer(true);
timer.schedule(
newjava.util.TimerTask() { public void run()
- Webbench
流浪鱼
webbench
首页下载地址 http://home.tiscali.cz/~cz210552/webbench.html
Webbench是知名的网站压力测试工具,它是由Lionbridge公司(http://www.lionbridge.com)开发。
Webbench能测试处在相同硬件上,不同服务的性能以及不同硬件上同一个服务的运行状况。webbench的标准测试可以向我们展示服务器的两项内容:每秒钟相
- 第11章 动画效果(中)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- windows下制作bat启动脚本.
sanyecao2314
javacmd脚本bat
java -classpath C:\dwjj\commons-dbcp.jar;C:\dwjj\commons-pool.jar;C:\dwjj\log4j-1.2.16.jar;C:\dwjj\poi-3.9-20121203.jar;C:\dwjj\sqljdbc4.jar;C:\dwjj\voucherimp.jar com.citsamex.core.startup.MainStart
- Java进行RSA加解密的例子
tomcat_oracle
java
加密是保证数据安全的手段之一。加密是将纯文本数据转换为难以理解的密文;解密是将密文转换回纯文本。 数据的加解密属于密码学的范畴。通常,加密和解密都需要使用一些秘密信息,这些秘密信息叫做密钥,将纯文本转为密文或者转回的时候都要用到这些密钥。 对称加密指的是发送者和接收者共用同一个密钥的加解密方法。 非对称加密(又称公钥加密)指的是需要一个私有密钥一个公开密钥,两个不同的密钥的
- Android_ViewStub
阿尔萨斯
ViewStub
public final class ViewStub extends View
java.lang.Object
android.view.View
android.view.ViewStub
类摘要: ViewStub 是一个隐藏的,不占用内存空间的视图对象,它可以在运行时延迟加载布局资源文件。当 ViewSt