[BZOJ1036][ZJOI2008]树的统计Count(树链剖分)

题目描述

传送门

题解

树链剖分模板题。

代码

// BZOJ 1036
#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;

const int max_n=3e4+5;
const int max_e=max_n*4;
const int max_N=max_n*4+5;
const int mininf=-2100000000;

int n,x,y,N,q,u,t,ans,f1,f2;

//w[i]表示点i的权值,size[i]表示以i为根的子树的结点个数,h[i]表示点i的深度,father[i]表示点i的父亲,son[i]表示点i的重儿子 
int w[max_n],size[max_n],h[max_n],father[max_n],son[max_n];

//top[i]表示点i所在的链的最头上的点,num[i]表示点i在线段树数组中对应的编号,tree[i]表示在线段树数组中编号为i的点在树中对应的点的编号 
int top[max_n],num[max_n],tree[max_n];

int point[max_n],next[max_e],v[max_e],tot;
char order[10];
int sum[max_N],maxn[max_N];

inline void add(int x,int y){
    ++tot; next[tot]=point[x]; point[x]=tot; v[tot]=y;
    ++tot; next[tot]=point[y]; point[y]=tot; v[tot]=x;
}

inline void dfs_1(int x,int fa,int dep){
    size[x]=1; h[x]=dep; father[x]=fa;
    int maxson=0;
    for (int i=point[x];i;i=next[i])
      if (v[i]!=fa){
        dfs_1(v[i],x,dep+1);
        size[x]+=size[v[i]];
        if (size[v[i]]>maxson){
            maxson=size[v[i]];
            son[x]=v[i];
          }
      }
}

inline void dfs_2(int x,int fa){
    if (son[fa]!=x) top[x]=x;
    else top[x]=top[fa];
    num[x]=++N;
    if (son[x]) dfs_2(son[x],x);
    for (int i=point[x];i;i=next[i])
      if (v[i]!=fa&&v[i]!=son[x])
        dfs_2(v[i],x);
}

inline void update_sum(int now){
    sum[now]=sum[now<<1]+sum[now<<1|1];
}

inline void update_max(int now){
    maxn[now]=max(maxn[now<<1],maxn[now<<1|1]);
}

inline void build_sum(int now,int l,int r){
    int mid=(l+r)>>1;
    if (l==r){
        sum[now]=w[tree[l]];
        return;
    }
    build_sum(now<<1,l,mid);
    build_sum(now<<1|1,mid+1,r);
    update_sum(now);
}

inline void build_max(int now,int l,int r){
    int mid=(l+r)>>1;
    if (l==r){
        maxn[now]=w[tree[l]];
        return;
    }
    build_max(now<<1,l,mid);
    build_max(now<<1|1,mid+1,r);
    update_max(now);
}

inline void point_change_sum(int now,int l,int r,int x,int v){
    int mid=(l+r)>>1;
    if (l==r){
        sum[now]=v;
        return;
    }
    if (x<=mid)
      point_change_sum(now<<1,l,mid,x,v);
    else 
      point_change_sum(now<<1|1,mid+1,r,x,v);
    update_sum(now);
}

inline void point_change_max(int now,int l,int r,int x,int v){
    int mid=(l+r)>>1;
    if (l==r){
        maxn[now]=v;
        return;
    }
    if (x<=mid)
      point_change_max(now<<1,l,mid,x,v);
    else
      point_change_max(now<<1|1,mid+1,r,x,v);
    update_max(now);
}

inline int query_sum(int now,int l,int r,int lrange,int rrange){
    int mid=(l+r)>>1,ans=0;
    if (lrange<=l&&r<=rrange) return sum[now];
    if (lrange<=mid)
      ans+=query_sum(now<<1,l,mid,lrange,rrange);
    if (mid+1<=rrange)
      ans+=query_sum(now<<1|1,mid+1,r,lrange,rrange);
    return ans;
}

inline int query_max(int now,int l,int r,int lrange,int rrange){
    int mid=(l+r)>>1,ans=mininf;
    if (lrange<=l&&r<=rrange) return maxn[now];
    if (lrange<=mid)
      ans=max(ans,query_max(now<<1,l,mid,lrange,rrange));
    if (mid+1<=rrange)
      ans=max(ans,query_max(now<<1|1,mid+1,r,lrange,rrange));
    return ans;
}

int main(){

    scanf("%d",&n);
    for (int i=1;i<n;++i){
        scanf("%d%d",&x,&y);
        add(x,y);
    }
    for (int i=1;i<=n;++i) scanf("%d",&w[i]);

    //预处理size,h,father,son的值 
    dfs_1(1,0,1);

    //预处理top,num,tree的值 
    dfs_2(1,0);
    for (int i=1;i<=n;++i)
      tree[num[i]]=i;

    build_sum(1,1,N);
    build_max(1,1,N);
    scanf("%d",&q);
    for (int i=1;i<=q;++i){
        scanf("%s",order);
        while (strlen(order)<4) scanf("%s",order);
        scanf("%d%d",&u,&t);
        if (order[0]=='C'){
            point_change_sum(1,1,N,num[u],t);
            point_change_max(1,1,N,num[u],t);
        }
        else{
            if (order[1]=='S'){
                ans=0;
                f1=top[u],f2=top[t];
                while (f1!=f2){
                    if (h[f1]<h[f2]){
                        swap(u,t);
                        swap(f1,f2);
                    }
                    ans+=query_sum(1,1,N,num[f1],num[u]);
                    u=father[f1];
                    f1=top[u]; 
                }               
                if (num[u]>num[t]) swap(u,t);
                ans+=query_sum(1,1,N,num[u],num[t]);
                printf("%d\n",ans);
            }
            else{
                ans=mininf;
                f1=top[u],f2=top[t];
                while (f1!=f2){
                    if (h[f1]<h[f2]){
                        swap(u,t);
                        swap(f1,f2);
                    }
                    ans=max(ans,query_max(1,1,N,num[f1],num[u]));
                    u=father[f1];
                    f1=top[u];
                }
                if (num[u]>num[t]) swap(u,t);
                ans=max(ans,query_max(1,1,N,num[u],num[t]));
                printf("%d\n",ans);
            }
        }       
    }
}

手写栈

#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;

const int max_n=3e4+5;
const int max_e=max_n*4;
const int max_N=max_n*4+5;
const int mininf=-2100000000;

int n,x,y,N,q,u,t,ans,f1,f2;
int w[max_n],size[max_n],h[max_n],father[max_n],son[max_n];
int top[max_n],num[max_n],tree[max_n];
int strack[max_n],cur[max_n],use[max_n];
int point[max_n],nxt[max_e],v[max_e],tot;
char order[10];
int sum[max_N],maxn[max_N];

inline void add(int x,int y){
    ++tot; nxt[tot]=point[x]; point[x]=tot; v[tot]=y;
    ++tot; nxt[tot]=point[y]; point[y]=tot; v[tot]=x;
}
inline void dfs_1()
{
    int temp=0;
    strack[++temp]=1; size[1]=1; h[1]=1;
    for (int i=1;i<=n;++i) cur[i]=point[i];
    while (temp)
    {
        int x=strack[temp];
        if (v[cur[x]]==father[x]) cur[x]=nxt[cur[x]];
        if (!cur[x])
        {
            temp--;
            if (father[x])
            {
                size[father[x]]+=size[x];
                if (size[x]>size[son[father[x]]]) son[father[x]]=x;
            }
            continue;
        }
        int vt=v[cur[x]];
        strack[++temp]=vt;
        size[vt]=1; h[vt]=h[x]+1; father[vt]=x;
        cur[x]=nxt[cur[x]];
    }
}
inline void dfs_2()
{
    int temp=0;
    strack[++temp]=1; num[1]=++N; top[1]=1;
    for (int i=1;i<=n;++i) cur[i]=point[i];
    while (temp)
    {
        int x=strack[temp];
        if (!use[x])
        {
            use[x]=1;
            int vt=son[x];
            if (vt)
            {
                strack[++temp]=vt;
                top[vt]=top[x];
                num[vt]=++N;
            }
            continue;
        }
        while (cur[x]&&(v[cur[x]]==father[x]||v[cur[x]]==son[x])) cur[x]=nxt[cur[x]];
        if (!cur[x])
        {
            temp--;
            continue;
        }
        else
        {
            int vt=v[cur[x]];
            strack[++temp]=vt;
            top[vt]=vt;
            num[vt]=++N;
            cur[x]=nxt[cur[x]];
        }
    }
}

inline void update_sum(int now){
    sum[now]=sum[now<<1]+sum[now<<1|1];
}
inline void update_max(int now){
    maxn[now]=max(maxn[now<<1],maxn[now<<1|1]);
}
inline void build_sum(int now,int l,int r){
    int mid=(l+r)>>1;
    if (l==r){
        sum[now]=w[tree[l]];
        return;
    }
    build_sum(now<<1,l,mid);
    build_sum(now<<1|1,mid+1,r);
    update_sum(now);
}
inline void build_max(int now,int l,int r){
    int mid=(l+r)>>1;
    if (l==r){
        maxn[now]=w[tree[l]];
        return;
    }
    build_max(now<<1,l,mid);
    build_max(now<<1|1,mid+1,r);
    update_max(now);
}
inline void point_change_sum(int now,int l,int r,int x,int v){
    int mid=(l+r)>>1;
    if (l==r){
        sum[now]=v;
        return;
    }
    if (x<=mid)
      point_change_sum(now<<1,l,mid,x,v);
    else 
      point_change_sum(now<<1|1,mid+1,r,x,v);
    update_sum(now);
}
inline void point_change_max(int now,int l,int r,int x,int v){
    int mid=(l+r)>>1;
    if (l==r){
        maxn[now]=v;
        return;
    }
    if (x<=mid)
      point_change_max(now<<1,l,mid,x,v);
    else
      point_change_max(now<<1|1,mid+1,r,x,v);
    update_max(now);
}
inline int query_sum(int now,int l,int r,int lrange,int rrange){
    int mid=(l+r)>>1,ans=0;
    if (lrange<=l&&r<=rrange) return sum[now];
    if (lrange<=mid)
      ans+=query_sum(now<<1,l,mid,lrange,rrange);
    if (mid+1<=rrange)
      ans+=query_sum(now<<1|1,mid+1,r,lrange,rrange);
    return ans;
}
inline int query_max(int now,int l,int r,int lrange,int rrange){
    int mid=(l+r)>>1,ans=mininf;
    if (lrange<=l&&r<=rrange) return maxn[now];
    if (lrange<=mid)
      ans=max(ans,query_max(now<<1,l,mid,lrange,rrange));
    if (mid+1<=rrange)
      ans=max(ans,query_max(now<<1|1,mid+1,r,lrange,rrange));
    return ans;
}
int main(){

    scanf("%d",&n);
    for (int i=1;i<n;++i){
        scanf("%d%d",&x,&y);
        add(x,y);
    }
    for (int i=1;i<=n;++i) scanf("%d",&w[i]);
    dfs_1();
    dfs_2();
    for (int i=1;i<=n;++i)
      tree[num[i]]=i;

    build_sum(1,1,N);
    build_max(1,1,N);
    scanf("%d",&q);
    for (int i=1;i<=q;++i){
        scanf("%s",order);
        scanf("%d%d",&u,&t);
        if (order[0]=='C'){
            point_change_sum(1,1,N,num[u],t);
            point_change_max(1,1,N,num[u],t);
        }
        else{
            if (order[1]=='S'){
                ans=0;
                f1=top[u],f2=top[t];
                while (f1!=f2){
                    if (h[f1]<h[f2]){
                        swap(u,t);
                        swap(f1,f2);
                    }
                    ans+=query_sum(1,1,N,num[f1],num[u]);
                    u=father[f1];
                    f1=top[u]; 
                }               
                if (num[u]>num[t]) swap(u,t);
                ans+=query_sum(1,1,N,num[u],num[t]);
                printf("%d\n",ans);
            }
            else{
                ans=mininf;
                f1=top[u],f2=top[t];
                while (f1!=f2){
                    if (h[f1]<h[f2]){
                        swap(u,t);
                        swap(f1,f2);
                    }
                    ans=max(ans,query_max(1,1,N,num[f1],num[u]));
                    u=father[f1];
                    f1=top[u];
                }
                if (num[u]>num[t]) swap(u,t);
                ans=max(ans,query_max(1,1,N,num[u],num[t]));
                printf("%d\n",ans);
            }
        }       
    }
}

总结

①线段树要开4n,不要开2n
②线段树的操作可以合并

你可能感兴趣的:(树链剖分,bzoj,ZJOI2008)