matplotlib绘图--完整-基础教程(一)

matplotlib的安装在之前的博客里有提到,可以去找找看

折线图

在同一张图中显示多个线条是因为hold属性是默认打开的,将属性关闭那么新的绘制将把之前的线条覆盖。

interactive是打开交互模式,随时可以观测线条的变化。

Adding a grid

Handling axes

默认坐标轴自适应,可以限制显示方式。

还有这几种方式控制坐标轴的变化:

  • plt.axis([xmin, xmax, ymin, ymax])
  • plt.axis(xmin=NNN, ymax=NNN)

Adding labels

Adding a title

Adding a legend

可以通过参数loc修改图标位置,0-10表示不一样的位置。还可以通过,loc=(0,1)表示左上角,(0.5,0.5)表示中间。当然,也可以利用loc='best'自适应。

A complete example

Saving plots to a file

Configuring through the Python code

Selecting backend from code

Control colors

Specifying styles in multiline plots

Control line styles

Control marker styles

Finer control with keyword arguments

Handling X and Y ticks

Plot types

Histogram charts

By default, hist() uses a bin value of 10 (so only ten categories, or bars, are computed), but we can customize it, either by passing an additional parameter, for example, in hist(y, <bins>), or using the bin keyword argument as hist(y, bin=<bins>).

Error bar charts

Bar charts

Pie charts

Scatter plots (散点图)

Polar charts

Control radial and angular grids

Text inside figure, annotations, and arrows

Text inside figure

Annotations

Arrows

Advanced Matplotlib

三种风格的显示图表

A brief introduction to Matplotlib objects

Our first (simple) example of OO Matplotlib

你可能感兴趣的:(matplotlib绘图--完整-基础教程(一))