URAL 1297 Palindrome(SA 求最长回文子串)

题目链接:Click here~~

题意:

RT。

解题思路:

这题纠结了好久。。。主要是用到了 RMQ,所以我顺手写了个 ST 的模板。结果模板打错,调了1小时+,TAT。

先回顾求回文子串的暴力做法,就是枚举中心,依次向两端扩展。

SA 做法:先在原字符串后面加一个特殊字符,然后再把原字符串倒过来接到后面去,得到这个长串的 height[]。

之后,我们依然枚举中心,向两端扩展相当于求一个以这个中心为开头的后缀和与它反过来的后缀的 lcp。

而任意两个后缀的 lcp,等于 min{height[k]}(rank[i]+1 <= k <= rank[j])。于是用 ST 可以解决这个 RMQ 问题。

#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;

const int N = 2e3 + 5;

int sa[N],rank[N],rank2[N],height[N],cnt[N],*x,*y;

/*
    * a radix_sort which is based on the y[].
    * how ? ahhhh, the last reverse for is the solution.
    * and the adjacant value of sa[] might have the same rank.
*/
void radix_sort(int n,int sz)
{
    memset(cnt,0,sizeof(cnt));
    for(int i=0;i<n;i++)
        cnt[ x[ y[i] ] ]++;
    for(int i=1;i<sz;i++)
        cnt[i] += cnt[i-1];
    for(int i=n-1;i>=0;i--)
        sa[ --cnt[ x[ y[i] ] ] ] = y[i];
}

/*
    * sa[i] represents the ith suffix string is which one.
    * rank[i] represents the suffix string [i,n]'s rank.
    * sz is the max_rank of text in that time.
    * x[] represents the true pointer of rank[] in that time and it may be not unique.
    * y[] is the location of text[] which is sorted by 2nd key in that time before swap(x,y).
*/
void get_sa(char text[],int n,int sz=128)
{
    x = rank, y = rank2;
    for(int i=0;i<n;i++)
        x[i] = text[i], y[i] = i;
    radix_sort(n,sz);
    for(int len=1;len<n;len<<=1)
    {
        int yid = 0;
        for(int i=n-len;i<n;i++)
            y[yid++] = i;
        for(int i=0;i<n;i++)
            if(sa[i] >= len)
                y[yid++] = sa[i] - len;
        radix_sort(n,sz);
        swap(x,y);
        x[ sa[0] ] = yid = 0;
        for(int i=1;i<n;i++)
        {
            if(y[ sa[i-1] ]==y[ sa[i] ] && sa[i-1]+len<n && sa[i]+len<n && y[ sa[i-1]+len ]==y[ sa[i]+len ])
                x[ sa[i] ] = yid;
            else
                x[ sa[i] ] = ++yid;
        }
        sz = yid + 1;
        if(sz >= n)
            break;
    }
    for(int i=0;i<n;i++)
        rank[i] = x[i];
}

/*
    * height[] represents the longest common prefix of suffix [i-1,n] and [i,n].
    * height[ rank[i] ] >= height[ rank[i-1] ] - 1.
    ..... let's call [k,n] is the suffix which rank[k] = rank[i-1] - 1,
    ...=> [k+1,n] is a suffix which rank[k+1] < rank[i]
    ..... and the lcp of [k+1,n] and [i,n] is height[ rank[i] ] - 1.
    ..... still unknow ? height[ rank[i] ] is the max lcp of rank[k] and rank[i] which rank[k] < rank[i].
*/
void get_height(char text[],int n)
{
    int k = 0;
    for(int i=0;i<n;i++)
    {
        if(rank[i] == 0)
            continue;
        k = max(0,k-1);
        int j = sa[ rank[i]-1 ];
        while(i+k<n && j+k<n && text[i+k]==text[j+k])
            k++;
        height[ rank[i] ] = k;
    }
}

namespace RMQ
{
    int dp[20][N];
    void init(int c[],int n)
    {
        for(int i=0;i<n;i++)
            dp[0][i] = c[i];
        for(int j=1;j<20;j++)
            for(int i=0;i+(1<<j)-1<n;i++)
                dp[j][i] = min(dp[j-1][i],dp[j-1][i+(1<<(j-1))]);
    }
    int _log2(int n)
    {
        int ret = 0;
        while(1<<(ret+1) <= n)
            ret++;
        return ret;
    }
    int get_min(int a,int b)
    {
        int k = _log2(b-a+1);
        return min(dp[k][a],dp[k][b-(1<<k)+1]);
    }
}

int lcp(int a,int b)
{
    a = rank[a] , b = rank[b];
    if(a > b)   swap(a,b);
    return RMQ::get_min(a+1,b);
}

char str[N];

int main()
{
    //freopen("in.ads","r",stdin);
    //freopen("out.ads","w",stdout);
    while(~scanf("%s",str))
    {
        int n = strlen(str);
        str[n] = 127;
        for(int i=n+1;i<n+1+n;i++)
            str[i] = str[n+n-i];
        n += n+1;
        str[n] = '\0';
        get_sa(str,n);
        get_height(str,n);
        RMQ::init(height,n);
        int mmax = 1, begin = 0;
        for(int i=1;i<n/2;i++)
        {
            int len = lcp(i,n-1-i);
            if(len*2 - 1 > mmax)
            {
                mmax = len*2 - 1;
                begin = i - len + 1;
            }
            len = lcp(i,n-i);
            if(len*2 > mmax)
            {
                mmax = len*2;
                begin = i - len;
            }
        }
        for(int i=begin;i<begin+mmax;i++)
            putchar(str[i]);
        puts("");
    }
    return 0;
}


你可能感兴趣的:(URAL 1297 Palindrome(SA 求最长回文子串))