Reservoir sampling(水塘抽样)

题目1:

给出一个数据流,这个数据流的长度很大或者未知。并且对该数据流中数据只能访问一次。请写出一个随机选择算法,使得数据流中所有数据被选中的概率相等。

对于复杂问题一定要学会归纳总结,即从小例子入手,然后分析,得出结论,然后在证明。不然遇到一个抽象问题,不举例感觉这个问题,直接解还是比较难的。

对于此问题的难处就是数据流的长度未知,如果已知,so easy。现在进行归纳总结:

1) 长度为1,只有一个数据,直接返回即可,此数据被返回的概率为1.

2)长度为2,当读取第一数据时,我们发现并不是最后一个数据,我们不能直接返回,因为数据流还没结束,继续读取,到第二数据的时候,发现已经结束。所以现在的问题就是等概率返回其中的一个,显然概率为0.5。所以此时我们可以生成一个0到1的随机数p,如果p小于0.5,返回第二个,如果大于0.5,返回第一个。显然此时两个数据被返回的概率是一样的。

3)长度为3,我们可以事先分析得到,为了满足题意,需要保证每个数据返回的概率都是1/3。接下来分析数据流,首先读取第一个数据,然后在读取第二个数据,此时可以按2)处理,保留一个数据,每个数据显然为1/2。此时读取第三个数据,发现到尾部了,为了满足题意,此时需要一1/3的概率决定是否取此数据。现在分析前两个数是否也是以1/3的概率返回,如果是则总体都满足。数据1和数据2同时留下的概率为:1/2 *(1-1/3)= 1/3。1/2只在数据1和数据2pk时,能留下的概率,1-1/3指数据3不被留下的概率。所以,对长度为3的数据流,在读取第三个数据时,我们可以生成一个0到1的随机数p,如果p小于1/3,返回第三个数据,否则,返回前面两个pk留下的数据。

由上面的分析,我们可以得出结论,在取第n个数据的时候,我们生成一个0到1的随机数p,如果p小于1/n,保留第n个数。大于1/n,继续保留前面的数。直到数据流结束,返回此数。

下面用数学归纳法证明此结论。

1)当n=1时,第一个元素以1/1的概率返回,符合条件。

2)假设当n=k时成立,即每个元素都以1/k的概率返回,先证明n=k+1时,是否成立。

对于最后一个元素显然以1/k+1的概率返回,符合条件,对于前k个数据,被返回的概率为1/k * (1- 1/k+1)=1/k+1,满足题意。

综上所述,结论成立。

题目2

对于题目1的要就变为,最后返回的结果长度为k,这就是水塘抽样

显然有了对题目1的理解,我们可以直接替换结论,只需把上面的1/n变为k/n即可。

在取第n个数据的时候,我们生成一个0到1的随机数p,如果p小于k/n,替换池中任意一个为第n个数。大于k/n,继续保留前面的数。直到数据流结束,返回此k个数。但是为了保证计算机计算分数额准确性,一般是生成一个0到n的随机数,跟k相比,道理是一样的。

可以以同样的方法证明之。

(1)初始情况k<=n,出现在水库中的k个元素的出现概率都是一致的,都是1
(2)第一步。第一步就是指,处理第k+1个元素的情况。分两种情况:元素全部都没有被替换;其中某个元素被第k+1个元素替换掉。
我们先看情况2:第k+1个元素被选中的概率是k/(k+1)(根据公式k/i),所以这个新元素在水库中出现的概率就一定是k/(k+1)(不管它替换掉哪个元素,反正肯定它是以这个概率出现在水库中)。下面来看水库中剩余的元素出现的概率,也就是1-P(这个元素被替换掉的概率)。水库中任意一个元素被替换掉的概率是:(k/k+1)*(1/k)=1/(k+1),意即首先要第k+1个元素被选中,然后自己在集合的k个元素中被选中。那它出现的概率就是1-1/(k+1)=k/(k+1)。可以看出来,旧元素和新元素出现的概率是相等的。
情况1:当元素全部都没有替换掉的时候,每个元素的出现概率肯定是一样的,这很显然。但具体是多少呢?就是1-P(第k+1个元素被选中)=1-k/(k+1)=1/(k+1)。
(3)归纳法:重复上面的过程,只要证明第i步到第i+1步,所有元素出现的概率是相等的即可。

伪代码如下:

//stream代表数据流
//reservoir代表返回长度为k的池塘

//从stream中取前k个放入reservoir;
for ( int i = 1; i < k; i++)
    reservoir[i] = stream[i];
for (i = k; stream != null; i++) {
    p = random(0, i);
    if (p < k) reservoir[p] = stream[i];
return reservoir;





你可能感兴趣的:(Reservoir sampling(水塘抽样))