- Java算法栈
王景程
java开发语言算法数据结构
栈作为编程中一个常见的算法,以下是它的特征以及一个相对应的例子:在编程中,**栈(Stack)**是一种后进先出(LIFO,LastInFirstOut)数据结构。它的特性是:入栈(Push):将元素添加到栈顶。出栈(Pop):将栈顶元素移除。查看栈顶元素(Peek/Top):获取栈顶元素但不移除。Java提供了一个现成的Stack类,它是java.util包的一部分,可以直接用于算法问题中。算法
- Adaptive AUTOSAR 学习笔记 3 - AP 背景、技术及特征
aFakeProgramer
APAUTOSAR#APAUTOSAR新标准解读系列学习笔记
本系列学习笔记基于AUTOSARAdaptivePlatform官方文档R20-11版本。本文从AUTOSAR_EXP_PlatformDesign.pdf开始,一边学习,一边顺带着翻译一下。尽力而为,不保证精确。你若愿意,也可以当作AUTOSARAdaptivePlatform(AP)中文版来阅读1介绍1.1内容本规范(AUTOSAR_EXP_PlatformDesign.pdf)描述AP设计。
- face-kkk
山山而川_R
face深度学习
目录一、配置环境1、新建虚拟环境2、配置环境安装包3、下载安装使用环境二、注册新人1、采集照片2、注册新人3、测试视频或摄像头三、配置文件config1、项目配置文件configs/configs.py,用于设置人脸检测模型,特征提取模型二、下面是自己测试用(个人的一个记录,不具备参考意义)MTCNN人脸检测参考项目:GitHub-Sierkinhane/mtcnn-pytorch:Afacede
- 小波变换算法详解(附Python和C++代码)
卢一涵
算法人工智能机器学习c++
小波变换算法是将初始数据分解为低频和高频的两组数据,再由这两组数据重新构造初始数据的算法(与傅里叶变换算法类似)。一般来说小波变换常用于数据降噪领域,也可以用于对数据进行压缩、数据特征提取、特征增强等方面。小波算法很难理解对不对,博主也觉得难理解,不过,算法本身并没有特别复杂,简单说就使把数据分解然后再重构这两个步骤。只要知道这两个步骤,剩下的就是顺水推舟,容易理解多了。小波分解:分解的步骤其实就
- Flink的流处理和批处理
Ray.1998
大数据flink大数据数据挖掘数据分析
1.流处理(StreamProcessing)流处理是Flink的核心功能之一,主要用于处理无限流数据,也就是不断到达的数据。它能够实时处理数据流,并对每个数据元素执行操作。流处理中的数据没有预定的边界,它的特征是持续到达,因此,流处理必须实时处理每个事件,而不能等到所有数据都到齐后再进行处理。核心特点:实时性:流处理的最大优势是实时性。Flink允许对实时数据流进行分析,计算和处理,几乎是对数据
- 信息流广告预估技术在美团外卖的实践 思维导图-java架构
用心去追梦
java架构开发语言
创建一个关于“信息流广告预估技术在美团外卖的实践”的思维导图,并且专注于Java架构下的实现,可以按照以下结构来组织内容。这个思维导图将涵盖从数据收集、特征工程、模型选择与训练、系统架构设计到性能优化和效果评估的关键领域。思维导图结构1.项目背景美团外卖平台简介用户群体与市场定位信息流广告的意义提升用户体验增加广告收益2.用户及上下文数据收集数据来源用户行为(点击、浏览、下单等)广告主提供的创意素
- 大型游戏服务器架构该怎么设计?
云网站长小陈
设计游戏架构
一、游戏服务器特征游戏服务器,是一个会长期运行程序,并且它还要服务于多个不定时,不定点的网络请求。所以这类服务的特点是要特别关注稳定性和性能。这类程序如果需要多个协作来提高承载能力,则还要关注部署和扩容的便利性;同时,还需要考虑如何实现某种程度容灾需求。由于多进程协同工作,也带来了开发的复杂度,这也是需要关注的问题。功能约束,是架构设计决定性因素。基于游戏业务的功能特征,对服务器端系统来说,有以下
- 深度学习模型开发文档
Ares代码行者
深度学习
深度学习模型开发文档1.简介2.深度学习模型开发流程3.数据准备3.1数据加载3.2数据可视化4.构建卷积神经网络(CNN)5.模型训练5.1定义损失函数和优化器5.2训练过程6.模型评估与优化6.1模型评估6.2超参数调优7.模型部署8.总结参考资料1.简介深度学习是人工智能的一个分支,利用多层神经网络从数据中提取特征并进行学习。它被广泛应用于图像识别、自然语言处理、语音识别等领域。本文将以构建
- solidworks的三维特征内容介绍
小白是昏头仔
3d
草图与尺寸相关尺寸预览与编辑:选择一个或多个实体后,可使用新选项预览和编辑尺寸,加快草图绘制速度,让设计师能更直观地调整尺寸以满足设计需求。异型孔向导增强:“异型孔向导”工具提供新选项来选择自动打孔的几何体的端点位置。还可使用几何草图实体(如直线、方形、槽口和样条曲线)作为打孔定位的引导,将鼠标悬停在实体上,单击即可在这些草图实体上定位孔,提高打孔操作的效率和准确性。显示自定义属性单位:在注释和表
- react - Ant Design Pro 报错Warning: React.createElement: type is invalid – expected a string (for buil
街尾杂货店&
前端常见问题解决前端组件与功能(开箱即用)reactantdesignpro创建全局组件时报错怎么解决组件引入导出报错解决浏览器控制台出现一片报错React.createEletypeisinvalid
报错问题在react+antdesignpro项目开发中,浏览器控制台出现报错:Warning:React.createElement:typeisinvalid–expectedastring(forbuilt-incomponents)oraclass/function(forcompositecomponents)butgot:undefined.Youlikelyforgottoexpor
- R语言机器学习算法实战系列(十九)特征选择之Monte Carlo算法(Monte Carlo Feature Selection)
生信学习者1
R语言机器学习实战r语言机器学习算法数据分析数据挖掘数据可视化人工智能
禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者!文章目录介绍原理步骤下载数据加载R包导入数据数据预处理数据分割MCFS运行MCFS-ID过程混淆矩阵重要特征的RI最小阈值距离与共同部分收敛特征重要性排序选择重要特征构建特征依赖图提取重要特征基于重要特征构建随机森林模型混淆矩阵评估模型AUC曲线刻画模型在训练和测试数据集的表现总结系统信息介绍特征选择(FeatureSel
- AI大模型行业发展五大趋势
大模型.
人工智能语言模型深度学习自然语言处理架构大模型
趋势一:大收敛与大分流,基础大模型向科技巨头收拢,而专业垂类模型“百花齐放”如果说2023年的大模型行业还主要是初创企业的天下,那么2024年最显著的特征之一即是互联网大厂加速入局,行业的水已被搅浑。未来的格局很可能是很少量的基础大模型(开源+闭源)加上各类专业模型、行业模型的局面。2023年可谓“AI元年”,AI视觉“四小龙”(商汤、旷世、依图、云从)和大模型“六小虎”(智谱AI、MiniMax
- 【计算机系统和网络安全技术】第九章:防火墙与入侵防御系统
Flavedo~Y
计算机系统和网络安全技术web安全网络安全
第九章:防火墙与入侵防御系统1.防火墙的必要性与Internet的连接性的非常重要的•会对机构产生威胁•保护局域网的一种有效方式•防火墙设置在驻地网和Internet之间,以建立二者间的可控链路•防火墙可以是单机系统,也可以是协作完成防火墙功能的两个或者更多系统。•纵深防御•提供一个能加强安全和审计的遏制点•将内部系统和外部网络隔离开来2.防火墙的特征和访问策略设计目标:所有从内部到外部的流量都必
- 如何正确定位前后端bug?
℡52Hz★
前后联调总结bugvue.js前端vue
在平时的开发过程中,正确定位前后端bug是提高开发效率和项目质量的关键。以下是一些实用的方法。一、前后端bug特征前端主要负责显示数据,后端主要负责处理数据、存储数据,前后端主要通过接口进行数据交换。1.前端bug特征界面显示类问题:如文字大小不一,控件颜色不搭,控件不整齐,静态界面错误;页面布局类问题:文字排版没有统一,行间距大小、重叠、显示不全;页面交互类问题:没有点击,拖拽,基本都是JS的问
- Python中实现多层感知机(MLP)的深度学习模型
Echo_Wish
Python笔记从零开始学Python人工智能python深度学习开发语言
深度学习已经成为机器学习领域的一个热门话题,而多层感知机(MLP)是最基础的深度学习模型之一。在这篇教程中,我将向你展示如何使用Python来实现一个简单的MLP模型。什么是多层感知机(MLP)?多层感知机(MLP)是一种前馈神经网络,它包含一个输入层、一个或多个隐藏层以及一个输出层。每个层都由一系列的神经元组成,神经元之间通过权重连接。MLP能够学习输入数据的非线性特征,因此在复杂问题的建模中非
- ssti注入
m0_73818134
flaskpython
flask有个明显的特征就是服务器模板,把用户输入的回显到web页面,一般在用户交互的地方(输入/输出),这个要用python去构造链子去执行python命令,来getshell。一般的注入是get型的如{{7*7}},{%7*7%},{#7*7#},还有{%print(7*7)%}.一般的链子1().__class__.__base__.__subclasses__()[140].__init_
- 【深度学习基础】线性神经网络 | softmax回归的简洁实现
Francek Chen
PyTorch深度学习深度学习神经网络回归softmax人工智能
【作者主页】FrancekChen【专栏介绍】⌈⌈⌈PyTorch深度学习⌋⌋⌋深度学习(DL,DeepLearning)特指基于深层神经网络模型和方法的机器学习。它是在统计机器学习、人工神经网络等算法模型基础上,结合当代大数据和大算力的发展而发展出来的。深度学习最重要的技术特征是具有自动提取特征的能力。神经网络算法、算力和数据是开展深度学习的三要素。深度学习在计算机视觉、自然语言处理、多模态数据
- 24/11/4 算法笔记 蛇形卷积
青椒大仙KI11
算法笔记目标跟踪
蛇形卷积(SnakeConvolution)是一种新型的卷积操作,它旨在提高对细长和弯曲的管状结构的特征提取能力。这种卷积操作的设计灵感来源于蛇形曲线,能够在不同尺度上捕捉到管状结构的细节信息,从而提高准确性。以下是蛇形卷积的一些核心特点和机制:动态蛇形卷积核:蛇形卷积核的形状不是固定的矩形或方形,而是类似于蛇形路径,这样的设计使得卷积核能够更灵活地捕捉图像中的曲线和非直线结构,更好地适应图像中的
- python3.6 split用法_对sklearn的使用之数据集的拆分与训练详解(python3.6)
weixin_39849054
python3.6split用法
研修课上讲了两个例子,融合一下。主要演示大致的过程:导入->拆分->训练->模型报告以及几个重要问题:①标签二值化②网格搜索法调参③k折交叉验证④增加噪声特征(之前涉及)fromsklearnimportdatasets#从cross_validation导入会出现warning,说已弃用fromsklearn.model_selectionimporttrain-test_splitfromsk
- ECCV 2024 | CC-SAM:用于超声图像分割的跨特征注意力和上下文的SAM
小白学视觉
计算机顶会论文解读人工智能ccf-aECCV计算机顶会深度学习
论文信息题目:CC-SAM:SAMwithCross-featureAttentionandContextforUltrasoundImageSegmentationCC-SAM:用于超声图像分割的跨特征注意力和上下文的SAM作者:ShreyankNGowda和DavidA.Clifton论文创新点变分注意力融合模块(VariationalAttentionFusionModule):作者提出了一
- 数据仓库,数据集市介绍
铜锣湾扛把子-数据
数据仓库数据仓库大数据hive
文章目录定义四大特征面向主题数据仓库中数据和传统数据库中数据的不同之处:每个主题所需要的数据存储集成的非易失随着时间不断变化的数据集市定义数据仓库是一个面向主题的,集成的,非易失性的且随时间变化的数据集合,用于支持管理人员的决策。四大特征面向主题的,集成的,非易失性,随时间不断变化的面向主题主题:特定的数据分析领域与目标(就是业务需求模块,比如用户模块,支付模块等)面向主题:为特定的数据分析领域提
- 【深度学习】Pytorch:在 ResNet 中加入注意力机制
T0uken
深度学习pytorch人工智能
在这篇教程中,我们将介绍如何在ResNet网络中加入注意力机制模块。我们将通过对标准ResNet50进行改进,向网络中添加两个自定义的注意力模块,并展示如何实现这一过程。为什么要加入注意力机制注意力机制可以帮助神经网络专注于图像中重要的特征区域,从而提高模型的性能。在卷积神经网络中,加入注意力机制能够有效增强特征提取能力,减少冗余信息的干扰,尤其在处理复杂图像时,能够提升网络的表现。在本教程中,我
- webdriver 反爬虫 (selenium反爬虫) 绕过
m0_74824044
爬虫selenium测试工具
1.webdriver反爬虫原理爬虫程序可以借助渲染工具从动态网页中获取数据。在这个过程中,“借助”其实是通过对应的浏览器驱动(即WebDriver)向浏览器发出指令的行为。因此,开发者可以根据客户端是否包含浏览器驱动这一特征来区分正常用户和爬虫程序。webdriver属性是我们最常听到的,通过webdriver驱动浏览器就会包含这一属性,因此可用来辨别爬虫程序(可检测的属性远不止这一种)。Web
- DETRs with Collaborative Hybrid Assignments Training论文阅读与代码
分享总结快乐
论文阅读
关键词:协作混合分配训练【目标检测】Co-DETR:ATSS+FasterRCNN+DETR协作的先进检测器(ICCV2023)-CSDN博客摘要:在这篇论文中,作者观察到在DETR中将过少的Query分配为正样本,采用一对一的集合匹配,会导致对编码器输出的监督稀疏,严重损害编码器的区分特征学习,反之亦然,也会影响解码器中的注意力学习。为了缓解这个问题,作者提出了一种新颖的协同混合分配训练方案,名
- 卷积调制空间自注意力SPATIALatt模型详解及代码复现
清风AI
深度学习人工智能python神经网络conda
背景与意义SPATIALaTT模型的提出源于对自注意力机制和卷积神经网络(CNN)的深入研究。在计算机视觉领域,CNN长期占据主导地位,而自注意力机制的引入为视觉任务带来了新的思路。SPATIALaTT模型的意义在于融合了这两种强大的特征提取方法,充分发挥了它们的优势。这种融合不仅提高了模型的性能,还为设计更高效的视觉模型提供了新的思路,推动了计算机视觉技术的发展。通过结合自注意力机制和卷积神经网
- 如何实现亿级用户在线状态统计?
繁川
Java面试精选数据库android
亿级用户在线场景分析与解决方案目录亿级用户在线场景分析解决方案2.1基于总数的统计方案2.2基于具体用户详情的统计方案具体实现3.1基于总数的统计方案3.2基于用户标识的统计实现3.3SpringBoot中的实现总结1.亿级用户在线场景分析以QQ在线状态统计为例,其典型特征包括:数据量大、内存占用高、实时性要求高。传统的解决方案(如在数据库中为每个用户添加一个在线状态字段,上线设为1,下线设为0)
- 深度学习学习笔记(第30周)
qq_51339898
深度学习人工智能
一、摘要本周报的目的在于汇报第30周的学习成果,本周主要聚焦于基于深度学习的图像分割领域的常用模型U-net。 U-net是最常用、最简单的一种分割模型,在2015年被提出。UNet网络是一种用于图像分割的卷积神经网络,其特点是采用了U型网络结构,因此称为UNet。UNet算法的关键创新是在解码器中引入了跳跃连接(SkipConnections),即将编码器中的特征图与解码器中对应的特征图进行连接
- Java——面向对象的编程学习
农夫三犭
Java学习笔记java后端
Java面向对象学习的三条主线1.Java类及类的成员:2.面向对象的三大特征:3.其他关键字:1.Java类及类的成员:主要包括:属性、方法、构造器、代码块和内部类2.面向对象的三大特征:封装性、继承性、多态性3.其他关键字:this、super、static、final、abstract、interface、package、import等本专栏将会按照上述三条主线详细介绍Java面向对象的编程
- 群晖NAS备份建议及备份方式
江东网
群晖NAS存储数据库
我们都知道,数据备份建议3-2-1原则,至少要有3份数据备份,将这些数据备份存放在2种不同的存储设备上,至少异地备份1份。这样才能确保我们的数据安全。那怎样把群晖NAS内的数据备份到本地或异地呢?群晖提供以下几种备份方式:备份到另一台群晖NASHyperBackup:数据、应用程序和系统设置进行自动备份ActiveBackupforBusiness:支持整机备份DSM系统,支持文件级还原Snaps
- 摆脱“鱼钩”:误点网络钓鱼链接后的10步自救法
网络安全
拼写错误、奇怪的语法、紧急或威胁的语言、缺乏上下文——所有这些都是网络钓鱼攻击的常见特征。然而,一些精心布局的网络钓鱼威胁通常很难被发现,因为它们往往涉及攻击者的大量时间投入以及详尽细致的计划,他们甚至会仔细检查目标过去的通信,以增加攻击成功的可能性。在大规模欺诈活动中,骗子常用的一种策略是利用当前的热门事件。例如,一封看似来自英国国家卫生服务机构提供免费COVID-19检测的电子邮件,实际上是一
- java的(PO,VO,TO,BO,DAO,POJO)
Cb123456
VOTOBOPOJODAO
转:
http://www.cnblogs.com/yxnchinahlj/archive/2012/02/24/2366110.html
-------------------------------------------------------------------
O/R Mapping 是 Object Relational Mapping(对象关系映
- spring ioc原理(看完后大家可以自己写一个spring)
aijuans
spring
最近,买了本Spring入门书:spring In Action 。大致浏览了下感觉还不错。就是入门了点。Manning的书还是不错的,我虽然不像哪些只看Manning书的人那样专注于Manning,但怀着崇敬 的心情和激情通览了一遍。又一次接受了IOC 、DI、AOP等Spring核心概念。 先就IOC和DI谈一点我的看法。IO
- MyEclipse 2014中Customize Persperctive设置无效的解决方法
Kai_Ge
MyEclipse2014
高高兴兴下载个MyEclipse2014,发现工具条上多了个手机开发的按钮,心生不爽就想弄掉他!
结果发现Customize Persperctive失效!!
有说更新下就好了,可是国内Myeclipse访问不了,何谈更新...
so~这里提供了更新后的一下jar包,给大家使用!
1、将9个jar复制到myeclipse安装目录\plugins中
2、删除和这9个jar同包名但是版本号较
- SpringMvc上传
120153216
springMVC
@RequestMapping(value = WebUrlConstant.UPLOADFILE)
@ResponseBody
public Map<String, Object> uploadFile(HttpServletRequest request,HttpServletResponse httpresponse) {
try {
//
- Javascript----HTML DOM 事件
何必如此
JavaScripthtmlWeb
HTML DOM 事件允许Javascript在HTML文档元素中注册不同事件处理程序。
事件通常与函数结合使用,函数不会在事件发生前被执行!
注:DOM: 指明使用的 DOM 属性级别。
1.鼠标事件
属性  
- 动态绑定和删除onclick事件
357029540
JavaScriptjquery
因为对JQUERY和JS的动态绑定事件的不熟悉,今天花了好久的时间才把动态绑定和删除onclick事件搞定!现在分享下我的过程。
在我的查询页面,我将我的onclick事件绑定到了tr标签上同时传入当前行(this值)参数,这样可以在点击行上的任意地方时可以选中checkbox,但是在我的某一列上也有一个onclick事件是用于下载附件的,当
- HttpClient|HttpClient请求详解
7454103
apache应用服务器网络协议网络应用Security
HttpClient 是 Apache Jakarta Common 下的子项目,可以用来提供高效的、最新的、功能丰富的支持 HTTP 协议的客户端编程工具包,并且它支持 HTTP 协议最新的版本和建议。本文首先介绍 HTTPClient,然后根据作者实际工作经验给出了一些常见问题的解决方法。HTTP 协议可能是现在 Internet 上使用得最多、最重要的协议了,越来越多的 Java 应用程序需
- 递归 逐层统计树形结构数据
darkranger
数据结构
将集合递归获取树形结构:
/**
*
* 递归获取数据
* @param alist:所有分类
* @param subjname:对应统计的项目名称
* @param pk:对应项目主键
* @param reportList: 最后统计的结果集
* @param count:项目级别
*/
public void getReportVO(Arr
- 访问WEB-INF下使用frameset标签页面出错的原因
aijuans
struts2
<frameset rows="61,*,24" cols="*" framespacing="0" frameborder="no" border="0">
- MAVEN常用命令
avords
Maven库:
http://repo2.maven.org/maven2/
Maven依赖查询:
http://mvnrepository.com/
Maven常用命令: 1. 创建Maven的普通java项目: mvn archetype:create -DgroupId=packageName 
- PHP如果自带一个小型的web服务器就好了
houxinyou
apache应用服务器WebPHP脚本
最近单位用PHP做网站,感觉PHP挺好的,不过有一些地方不太习惯,比如,环境搭建。PHP本身就是一个网站后台脚本,但用PHP做程序时还要下载apache,配置起来也不太很方便,虽然有好多配置好的apache+php+mysq的环境,但用起来总是心里不太舒服,因为我要的只是一个开发环境,如果是真实的运行环境,下个apahe也无所谓,但只是一个开发环境,总有一种杀鸡用牛刀的感觉。如果php自己的程序中
- NoSQL数据库之Redis数据库管理(list类型)
bijian1013
redis数据库NoSQL
3.list类型及操作
List是一个链表结构,主要功能是push、pop、获取一个范围的所有值等等,操作key理解为链表的名字。Redis的list类型其实就是一个每个子元素都是string类型的双向链表。我们可以通过push、pop操作从链表的头部或者尾部添加删除元素,这样list既可以作为栈,又可以作为队列。
&nbs
- 谁在用Hadoop?
bingyingao
hadoop数据挖掘公司应用场景
Hadoop技术的应用已经十分广泛了,而我是最近才开始对它有所了解,它在大数据领域的出色表现也让我产生了兴趣。浏览了他的官网,其中有一个页面专门介绍目前世界上有哪些公司在用Hadoop,这些公司涵盖各行各业,不乏一些大公司如alibaba,ebay,amazon,google,facebook,adobe等,主要用于日志分析、数据挖掘、机器学习、构建索引、业务报表等场景,这更加激发了学习它的热情。
- 【Spark七十六】Spark计算结果存到MySQL
bit1129
mysql
package spark.examples.db
import java.sql.{PreparedStatement, Connection, DriverManager}
import com.mysql.jdbc.Driver
import org.apache.spark.{SparkContext, SparkConf}
object SparkMySQLInteg
- Scala: JVM上的函数编程
bookjovi
scalaerlanghaskell
说Scala是JVM上的函数编程一点也不为过,Scala把面向对象和函数型编程这两种主流编程范式结合了起来,对于熟悉各种编程范式的人而言Scala并没有带来太多革新的编程思想,scala主要的有点在于Java庞大的package优势,这样也就弥补了JVM平台上函数型编程的缺失,MS家.net上已经有了F#,JVM怎么能不跟上呢?
对本人而言
- jar打成exe
bro_feng
java jar exe
今天要把jar包打成exe,jsmooth和exe4j都用了。
遇见几个问题。记录一下。
两个软件都很好使,网上都有图片教程,都挺不错。
首先肯定是要用自己的jre的,不然不能通用,其次别忘了把需要的lib放到classPath中。
困扰我很久的一个问题是,我自己打包成功后,在一个同事的没有装jdk的电脑上运行,就是不行,报错jvm.dll为无效的windows映像,如截图
最后发现
- 读《研磨设计模式》-代码笔记-策略模式-Strategy
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
策略模式定义了一系列的算法,并将每一个算法封装起来,而且使它们还可以相互替换。策略模式让算法独立于使用它的客户而独立变化
简单理解:
1、将不同的策略提炼出一个共同接口。这是容易的,因为不同的策略,只是算法不同,需要传递的参数
- cmd命令值cvfM命令
chenyu19891124
cmd
cmd命令还真是强大啊。今天发现jar -cvfM aa.rar @aaalist 就这行命令可以根据aaalist取出相应的文件
例如:
在d:\workspace\prpall\test.java 有这样一个文件,现在想要将这个文件打成一个包。运行如下命令即可比如在d:\wor
- OpenJWeb(1.8) Java Web应用快速开发平台
comsci
java框架Web项目管理企业应用
OpenJWeb(1.8) Java Web应用快速开发平台的作者是我们技术联盟的成员,他最近推出了新版本的快速应用开发平台 OpenJWeb(1.8),我帮他做做宣传
OpenJWeb快速开发平台以快速开发为核心,整合先进的java 开源框架,本着自主开发+应用集成相结合的原则,旨在为政府、企事业单位、软件公司等平台用户提供一个架构透
- Python 报错:IndentationError: unexpected indent
daizj
pythontab空格缩进
IndentationError: unexpected indent 是缩进的问题,也有可能是tab和空格混用啦
Python开发者有意让违反了缩进规则的程序不能通过编译,以此来强制程序员养成良好的编程习惯。并且在Python语言里,缩进而非花括号或者某种关键字,被用于表示语句块的开始和退出。增加缩进表示语句块的开
- HttpClient 超时设置
dongwei_6688
httpclient
HttpClient中的超时设置包含两个部分:
1. 建立连接超时,是指在httpclient客户端和服务器端建立连接过程中允许的最大等待时间
2. 读取数据超时,是指在建立连接后,等待读取服务器端的响应数据时允许的最大等待时间
在HttpClient 4.x中如下设置:
HttpClient httpclient = new DefaultHttpC
- 小鱼与波浪
dcj3sjt126com
一条小鱼游出水面看蓝天,偶然间遇到了波浪。 小鱼便与波浪在海面上游戏,随着波浪上下起伏、汹涌前进。 小鱼在波浪里兴奋得大叫:“你每天都过着这么刺激的生活吗?简直太棒了。” 波浪说:“岂只每天过这样的生活,几乎每一刻都这么刺激!还有更刺激的,要有潮汐变化,或者狂风暴雨,那才是兴奋得心脏都会跳出来。” 小鱼说:“真希望我也能变成一个波浪,每天随着风雨、潮汐流动,不知道有多么好!” 很快,小鱼
- Error Code: 1175 You are using safe update mode and you tried to update a table
dcj3sjt126com
mysql
快速高效用:SET SQL_SAFE_UPDATES = 0;下面的就不要看了!
今日用MySQL Workbench进行数据库的管理更新时,执行一个更新的语句碰到以下错误提示:
Error Code: 1175
You are using safe update mode and you tried to update a table without a WHERE that
- 枚举类型详细介绍及方法定义
gaomysion
enumjavaee
转发
http://developer.51cto.com/art/201107/275031.htm
枚举其实就是一种类型,跟int, char 这种差不多,就是定义变量时限制输入的,你只能够赋enum里面规定的值。建议大家可以看看,这两篇文章,《java枚举类型入门》和《C++的中的结构体和枚举》,供大家参考。
枚举类型是JDK5.0的新特征。Sun引进了一个全新的关键字enum
- Merge Sorted Array
hcx2013
array
Given two sorted integer arrays nums1 and nums2, merge nums2 into nums1 as one sorted array.
Note:You may assume that nums1 has enough space (size that is
- Expression Language 3.0新特性
jinnianshilongnian
el 3.0
Expression Language 3.0表达式语言规范最终版从2013-4-29发布到现在已经非常久的时间了;目前如Tomcat 8、Jetty 9、GlasshFish 4已经支持EL 3.0。新特性包括:如字符串拼接操作符、赋值、分号操作符、对象方法调用、Lambda表达式、静态字段/方法调用、构造器调用、Java8集合操作。目前Glassfish 4/Jetty实现最好,对大多数新特性
- 超越算法来看待个性化推荐
liyonghui160com
超越算法来看待个性化推荐
一提到个性化推荐,大家一般会想到协同过滤、文本相似等推荐算法,或是更高阶的模型推荐算法,百度的张栋说过,推荐40%取决于UI、30%取决于数据、20%取决于背景知识,虽然本人不是很认同这种比例,但推荐系统中,推荐算法起的作用起的作用是非常有限的。
就像任何
- 写给Javascript初学者的小小建议
pda158
JavaScript
一般初学JavaScript的时候最头痛的就是浏览器兼容问题。在Firefox下面好好的代码放到IE就不能显示了,又或者是在IE能正常显示的代码在firefox又报错了。 如果你正初学JavaScript并有着一样的处境的话建议你:初学JavaScript的时候无视DOM和BOM的兼容性,将更多的时间花在 了解语言本身(ECMAScript)。只在特定浏览器编写代码(Chrome/Fi
- Java 枚举
ShihLei
javaenum枚举
注:文章内容大量借鉴使用网上的资料,可惜没有记录参考地址,只能再传对作者说声抱歉并表示感谢!
一 基础 1)语法
枚举类型只能有私有构造器(这样做可以保证客户代码没有办法新建一个enum的实例)
枚举实例必须最先定义
2)特性
&nb
- Java SE 6 HotSpot虚拟机的垃圾回收机制
uuhorse
javaHotSpotGC垃圾回收VM
官方资料,关于Java SE 6 HotSpot虚拟机的garbage Collection,非常全,英文。
http://www.oracle.com/technetwork/java/javase/gc-tuning-6-140523.html
Java SE 6 HotSpot[tm] Virtual Machine Garbage Collection Tuning
&