ZOJ 2587 Unique Attack
链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1587
题意:N 台超级计算机连成一个网络。M 对计算机之间用光纤直接连在一起,光纤的连接是双向的。数据可以直接在有光纤直接连接的计算机之间传输,也可以通过一些计算机作为中转来传输。
有一群恐怖分子计划攻击网络。他们的目标是将网络中两台主计算机断开,这样这两台计算机之间就无法传输数据了。恐怖分子已经计算好了摧毁每条光纤所需要花费的钱。当然了,他们希望攻击的费用最少,因此就必须使得需要摧毁的光纤费用总和最少。
现在,恐怖分子的头头想知道要达到目标且费用最少,是否只有一种方案。
思路:给定一个无向图,每条边上有权值。两个点,保证两个点之间连通。问最小割是否唯一。
从源点出发,走非满流的边,所有能够遍历到的点属于S集合。
从汇点出发,走非满流的边,所有能够遍历到的点属于T集合。(从汇点遍历必须重新构图)
首先可以保证,S集合和T集合内不会有相同的点,但两者的和并不一定是全集。因为有些点,到S集合为满流,到T集合也为满流,这些点既可以划分到S集合,也可以划分为T集合。所以当有这些点存在时,即S集合 + T集合不是全集时,最小割不唯一。
代码:
/*
ID: [email protected]
PROG:
LANG: C++
*/
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<cmath>
#include<cstdio>
#include<vector>
#include<string>
#include<fstream>
#include<cstring>
#include<ctype.h>
#include<iostream>
#include<algorithm>
using namespace std;
#define INF (1<<30)
#define PI acos(-1.0)
#define mem(a, b) memset(a, b, sizeof(a))
#define rep(i, a, n) for (int i = a; i < n; i++)
#define per(i, a, n) for (int i = n - 1; i >= a; i--)
#define eps 1e-6
#define debug puts("===============")
#define pb push_back
#define mkp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
#define POSIN(x,y) (0 <= (x) && (x) < n && 0 <= (y) && (y) < m)
typedef long long ll;
typedef unsigned long long ULL;
const int maxn = 1000;
const int maxm = 222222;
int m;
struct node {
int u;
int v; // vertex
int cap; // capacity
int flow; // current flow in this arc
int nxt;
} e[maxm * 2];
int g[maxn], cnt;
int st, ed, n, N, M, A, B;
void add(int u, int v, int c) {
e[++cnt].v = v;
e[cnt].u = u;
e[cnt].cap = c;
e[cnt].flow = 0;
e[cnt].nxt = g[u];
g[u] = cnt;
e[++cnt].v = u;
e[cnt].u = v;
e[cnt].cap = 0;
e[cnt].flow = 0;
e[cnt].nxt = g[v];
g[v] = cnt;
}
void init() {
memset(g, 0, sizeof(g));
cnt = 1;
int u, v, c;
while(M--) {
scanf("%d%d%d", &u, &v, &c);
add(u, v, c);
add(v, u, c);
}
st = A, ed = B;
n = N + 3;
}
int dist[maxn], numbs[maxn], q[maxn];
void rev_bfs() {
int font = 0, rear = 1;
for (int i = 0; i <= n; i++) { //n为总点数
dist[i] = maxn;
numbs[i] = 0;
}
q[font] = ed;
dist[ed] = 0;
numbs[0] = 1;
while(font != rear) {
int u = q[font++];
for (int i = g[u]; i; i = e[i].nxt) {
if (e[i ^ 1].cap == 0 || dist[e[i].v] < maxn) continue;
dist[e[i].v] = dist[u] + 1;
++numbs[dist[e[i].v]];
q[rear++] = e[i].v;
}
}
}
int maxflow() {
rev_bfs();
int u, totalflow = 0;
int curg[maxn], revpath[maxn];
for(int i = 0; i <= n; ++i) curg[i] = g[i];
u = st;
while(dist[st] < n) {
if(u == ed) { // find an augmenting path
int augflow = INF;
for(int i = st; i != ed; i = e[curg[i]].v)
augflow = min(augflow, e[curg[i]].cap);
for(int i = st; i != ed; i = e[curg[i]].v) {
e[curg[i]].cap -= augflow;
e[curg[i] ^ 1].cap += augflow;
e[curg[i]].flow += augflow;
e[curg[i] ^ 1].flow -= augflow;
}
totalflow += augflow;
u = st;
}
int i;
for(i = curg[u]; i; i = e[i].nxt)
if(e[i].cap > 0 && dist[u] == dist[e[i].v] + 1) break;
if(i) { // find an admissible arc, then Advance
curg[u] = i;
revpath[e[i].v] = i ^ 1;
u = e[i].v;
} else { // no admissible arc, then relabel this vertex
if(0 == (--numbs[dist[u]])) break; // GAP cut, Important!
curg[u] = g[u];
int mindist = n;
for(int j = g[u]; j; j = e[j].nxt)
if(e[j].cap > 0) mindist = min(mindist, dist[e[j].v]);
dist[u] = mindist + 1;
++numbs[dist[u]];
if(u != st)
u = e[revpath[u]].v; // Backtrack
}
}
return totalflow;
}
int vis[maxn];
vector<int> G[maxn];
int stcnt, edcnt;
void dfs1(int u) {
stcnt++;
vis[u] = 1;
for (int i = g[u]; i; i = e[i].nxt) if (!vis[e[i].v] && e[i].cap) {
dfs1(e[i].v);
}
}
void dfs2(int u) {
edcnt++;
vis[u] = 1;
for (int i = 0; i < G[u].size(); i++) if (!vis[G[u][i]]) dfs2(G[u][i]);
}
int main () {
while(~scanf("%d%d%d%d", &N, &M, &A, &B), N || M || A || B) {
init();
maxflow(); //先做一次网络流得到最小割
memset(vis, 0, sizeof(vis));
stcnt = edcnt = 0;
for (int i = 0; i <= N; i++) G[i].clear();
for (int i = 2; i < cnt; i += 2) if (e[i].cap) {
G[e[i].v].pb(e[i].u); //将非满流的边反向构图,以便从汇点dfs
}
dfs1(st); // 从源点dfs
dfs2(ed); // 从汇点dfs
if (stcnt + edcnt == N) puts("UNIQUE");
else puts("AMBIGUOUS");
}
return 0;
}