【混合欧拉】 HDOJ 3472 HS BDC

题意:词语接龙,给出n个词语,一些词语可以反转,问是否存在欧拉路径。

先判定图是否连通,再判断是否存在欧拉路径

欧拉路径的条件:满足欧拉回路或只存在两个点为奇数。

然后建图:令c=(出度-入度)/2,若出度大于入度,连边si容量为c,反之连it容量为c

若求欧拉路径,设两个奇数的点为k1,k2out[k1]++,in[k2]++,再连边k1,k2,容量为1.

#include <iostream>
#include <queue> 
#include <stack> 
#include <map> 
#include <set> 
#include <bitset> 
#include <cstdio> 
#include <algorithm> 
#include <cstring> 
#include <climits>
#include <cstdlib>
#include <cmath>
#include <time.h>
#define maxn 55
#define maxm 4005
#define eps 1e-7
#define mod 1000000007
#define INF 0x3f3f3f3f
#define PI (acos(-1.0))
#define lowbit(x) (x&(-x))
#define mp make_pair
#define ls o<<1
#define rs o<<1 | 1
#define lson o<<1, L, mid 
#define rson o<<1 | 1, mid+1, R
#define pii pair<int, int>
#pragma comment(linker, "/STACK:16777216")
typedef long long LL;
typedef unsigned long long ULL;
//typedef int LL;
using namespace std;
LL qpow(LL a, LL b){LL res=1,base=a;while(b){if(b%2)res=res*base;base=base*base;b/=2;}return res;}
LL powmod(LL a, LL b){LL res=1,base=a;while(b){if(b%2)res=res*base%mod;base=base*base%mod;b/=2;}return res;}
// head

struct Edge
{
	int v, c, next;
	Edge () {}
	Edge(int v, int c, int next) : v(v), c(c), next(next) {}
}E[maxm];

queue<int> q;
int H[maxn], cntE;
int dis[maxn];
int cur[maxn];
int cnt[maxn];
int pre[maxn];
int in[maxn];
int out[maxn];
int flow, t, s, nv;

void addedges(int u, int v, int c)
{
	E[cntE] = Edge(v, c, H[u]);
	H[u] = cntE++;
	E[cntE] = Edge(u, 0, H[v]);
	H[v] = cntE++;
}

void bfs()
{
	memset(cnt, 0, sizeof cnt);
	memset(dis, -1, sizeof dis);
	cnt[0] = 1, dis[t] = 0;
	q.push(t);
	while(!q.empty()) {
		int u = q.front();
		q.pop();
		for(int e = H[u]; ~e; e = E[e].next) {
			int v = E[e].v;
			if(dis[v] == -1) {
				dis[v] = dis[u] + 1;
				cnt[dis[v]]++;
				q.push(v);	
			}
		}
	}
}

int isap()
{
	memcpy(cur, H, sizeof cur);
	flow = 0;
	bfs();
	int u = pre[s] = s, minv, e, f, pos;
	while(dis[s] < nv) {
		if(u == t) {
			f = INF;
			for(int i = s; i != t; i = E[cur[i]].v) if(E[cur[i]].c < f) {
				f = E[cur[i]].c;
				pos = i;
			}
			for(int i = s; i != t; i = E[cur[i]].v) {
				E[cur[i]].c -= f;
				E[cur[i] ^ 1].c += f;
			}
			flow += f;
			u = pos;
		}
		for(e = H[u]; ~e; e = E[e].next) if(E[e].c && dis[E[e].v] + 1 == dis[u]) break;
		if(~e) {
			cur[u] = e;
			pre[E[e].v] = u;
			u = E[e].v;
		}
		else {
			if(--cnt[dis[u]] == 0) break;
			for(e = H[u], minv = nv; ~e; e = E[e].next) if(E[e].c && minv > dis[E[e].v]) {
				minv = dis[E[e].v];
				cur[u] = e;
			}
			dis[u] = minv + 1;
			cnt[dis[u]]++;
			u = pre[u];
		}
	}
	return flow;
}

const int Mc = 'a';
int n, cc;
int f[maxn];
bool vis[maxn];
char ss[maxn];

int find(int u)
{
	return u == f[u] ? f[u] : find(f[u]);
}

bool merge(int a, int b)
{
	int aa = find(a), bb = find(b);
	if(aa != bb) {
		f[aa] = bb;
		return true;
	}
	else return false;
}

void init()
{
	cntE = 0, cc = 1;
	memset(H, -1, sizeof H);
	memset(in, 0, sizeof in);
	memset(out, 0, sizeof out);
	memset(vis, 0, sizeof vis);
}

void read()
{
	int k, a, b;
	scanf("%d", &n);
	for(int i = 0; i <= 26; i++) f[i] = i;
	for(int i = 0; i < n; i++) {
		scanf("%s%d", ss, &k);
		int len = strlen(ss);
		int a = ss[0] - Mc;
		int b = ss[len-1] - Mc;
		cc += merge(a, b);
		vis[a] = true;
		vis[b] = true;
		out[a]++, in[b]++;
		if(k && a != b) addedges(a, b, 1);
	}
}

void work()
{
	int t2 = 0;
	for(int i = 0; i < 26; i++) t2 += vis[i];
	if(t2 != cc) {
		printf("Poor boy!\n");
		return;
	}
	s = 27, t = 28, nv = cc + 2;
	t2 = cc = 0;
	int k1, k2;
	for(int i = 0; i < 26; i++) if(vis[i]) {
		if((out[i] - in[i]) % 2) {
			t2++;
			if(t2 == 1) k1 = i;
			else k2 = i;
		}
	}
	if(t2 == 2) {
		out[k1]++, in[k2]++;
		addedges(k1, k2, 1);
	}
	for(int i = 0; i < 26; i++) if(vis[i]) {
		int tt = (out[i] - in[i]) / 2;
		if(tt) {
			if(tt > 0) cc += tt, addedges(s, i, tt);
			else addedges(i, t, -tt);
		}
	}
	if(t2 != 0 && t2 != 2) {
		printf("Poor boy!\n");
		return;
	}
	if(isap() != cc) printf("Poor boy!\n");
	else printf("Well done!\n");
}

int main()
{
	int _, __;
	while(scanf("%d", &_)!=EOF) {
		__ = 0;
		while(_--) {
			init();
			read();
			printf("Case %d: ", ++__);
			work();
		}
	}
	
	return 0;
}


你可能感兴趣的:(欧拉回路,hdoj)