URAL1962:In Chinese Restaurant(并查集)

Open Ural FU Personal Contest 2013



When Vova arrived in Guangzhou, his Chinese friends immediately invited him to a restaurant. Overall n people came to the restaurant, including Vova. The waiter offered to seat the whole company at a traditional large round table with a rotating dish plate in the center.
As Vova was a guest, he got the honorable place by the door. Then  m people in the company stated that they wanted to sit near a certain person. Your task is to determine the number of available arrangements to seat Vova's friends at the table.

Input

The first line contains integers  n and  m (2 ≤  n ≤ 100; 0 ≤  m ≤  n). The next  m lines contain integers  k 1, …,  k m, where  k i is the number of the person who the person number  i wants to sit with (1 ≤  k i ≤  nk i ≠  i). Being an honorable guest, Vova got number 1. His friends are numbered with integers from 2 to  n.

Output

Print the number of available arrangements to seat Vova's friends modulo 10 9 + 7.

Samples

input output
6 6
2
1
1
5
6
5
4
4 3
2
3
1
0


题意:有n个人,分别编号1~n,有m个人分别表达自己的意愿,这m个人分别是1~m编号的这几个人

然后给出m个数,表示第i个人想要坐在第x个人的旁边,现在要求的是,在满足了这m个人的意愿的情况下,这张大圆桌有几种坐法


思路:我们首先来分析,对于那些想要坐在临近的人必然是互相相连的,那么他们就可以构成一棵树,那么对于总共的坐法,就是对s棵树的全排列

对于单个点的树,我们可以不用太多考虑

那么对于有子节点的树,我们要考虑环的问题

如果成环了,那么必然只剩这棵树本身,如果还有其他子树,那么必然无法满足

对于不成环的情况,我们还要注意的是对于单个节点,如果其身边必须安排的人数大于2,那么是无法满足的,因为他身边最多只能安排2个人

那么对于每棵树,这棵树不只一个节点,那么必然有两种情况

首先,如果是一条直链,例如1-2,我们有1-2和2-1两种

对于不是直链,那么肯定可以交换左右两支

什么?你说三链?这种情况之前就否定了,是0

解决了这些问题之后,这道题就解决了


#include <iostream>
#include <stdio.h>
#include <string.h>
#include <stack>
#include <queue>
#include <map>
#include <set>
#include <vector>
#include <math.h>
#include <algorithm>
using namespace std;
#define ls 2*i
#define rs 2*i+1
#define up(i,x,y) for(i=x;i<=y;i++)
#define down(i,x,y) for(i=x;i>=y;i--)
#define mem(a,x) memset(a,x,sizeof(a))
#define w(a) while(a)
#define LL long long
const double pi = acos(-1.0);
#define Len 200005
#define mod 1000000007
const int INF = 0x3f3f3f3f;

int vis[105][105];
int father[105];
int d[105],s[105];
LL ans;

int find(int x)
{
    if(father[x]==x) return x;
    return father[x] = find(father[x]);
}

int main()
{
    int n,m,i,j,k,x;
    w(~scanf("%d%d",&n,&m))
    {
        mem(vis,0);
        up(i,0,n)
        {
            father[i] = i;
            s[i] = 1;//这棵树的节点的情况
            d[i] = 0;//d[i]是i的周围必须安排几个人
        }
        int sum = n,flag = 0;
        up(i,1,m)
        {
            scanf("%d",&x);
            if(vis[i][x] || vis[x][i]) continue;
            vis[i][x] = vis[x][i] = 1;
            d[i]++;
            d[x]++;
            if(find(x)!=find(i))
            {
                s[find(i)]+=s[find(x)];
                father[find(x)] = father[find(i)];
                sum--;//减少了一棵树
            }
            else
                flag = 1;//成环
        }
        if(n==2)//只有两个人必然只有一种坐法
        {
            printf("1\n",ans);
            continue;
        }
        up(i,1,n)
        {
            if(d[i]>2)//i的旁边要安排的人数大于2,必然无法满足
                break;
        }
        if(i<=n || (sum>1&&flag))//成环并且除了这棵子树还有其他子树,必然无法满足
        {
            printf("0\n");
            continue;
        }
        ans = 1;
        up(i,1,sum-1)//对于这些树全排列的方式有几种,但是1的位置是固定的
        ans = (ans*i)%mod;
        up(i,1,n)
        {
            if(father[i]==i && s[i]>1)//看根节点,如果这棵树不只一个节点,那么就有两种情况
                ans = (ans*2)%mod;
        }
        printf("%I64d\n",ans);
    }

    return 0;
}


你可能感兴趣的:(ural)