Hdu 4114 Disney's FastPass(状压dp)

题目链接

Disney's FastPass

Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1804    Accepted Submission(s): 470


Problem Description

Disney's FastPass is a virtual queuing system created by the Walt Disney Company. First introduced in 1999 (thugh the idea of a ride reservation system was first introduced in world fairs), Fast-Pass allows guests to avoid long lines at the attractions on which the system is installed, freeing them to enjoy other attractions during their wait. The service is available at no additional charge to all park guests.
--- wikipedia


Hdu 4114 Disney's FastPass(状压dp)_第1张图片
Disneyland is a large theme park with plenties of entertainment facilities, also with a large number of tourists. Normally, you need to wait for a long time before geting the chance to enjoy any of the attractions. The FastPass is a system allowing you to pick up FastPass-tickets in some specific position, and use them at the corresponding facility to avoid long lines. With the help of the FastPass System, one can arrange his/her trip more efficiently.
You are given the map of the whole park, and there are some attractions that you are interested in. How to visit all the interested attractions within the shortest time?
 

Input
The first line contains an integer T(1<=T<=25), indicating the number of test cases.
Each test case contains several lines.
The first line contains three integers N,M,K(1 <= N <= 50; 0 <= M <= N(N - 1)/2; 0 <= K <= 8), indicating the number of locations(starting with 1, and 1 is the only gate of the park where the trip must be started and ended), the number of roads and the number of interested attractions.
The following M lines each contains three integers A,B,D(1 <= A,B <= N; 0 <= D <= 10^4) which means it takes D minutes to travel between location A and location B.
The following K lines each contains several integers P i, T i, FT i,N i, F i,1, F i,2 ... F i,Ni-1, F iNi ,(1 <= P i,N i, F i,j <=N, 0 <= FT i <= T i <= 10^4), which means the ith interested araction is placed at location Pi and there are Ni locations F i,1; F i,2 ... F i,N i where you can get the FastPass for the ith attraction. If you come to the ith attraction with its FastPass, you need to wait for only FTi minutes, otherwise you need to wait for Ti minutes.
You can assume that all the locations are connected and there is at most one road between any two locations.
Note that there might be several attrractions at one location.
 

Output
For each test case in the input, print one line: "Case #X: Y", where X is the test case number (starting with 1) and Y is the minimum time of the trip.
 

Sample Input
   
   
   
   
2 4 5 2 1 2 8 2 3 4 3 4 19 4 1 6 2 4 7 2 25 18 1 3 4 12 6 1 3 4 6 2 1 2 5 1 4 4 3 1 1 3 2 1 3 4 1 2 4 10 2 8 3 1 4 4 8 3 1 2
 

Sample Output
   
   
   
   
Case #1: 53 Case #2: 14
 

Source
2011 Asia ChengDu Regional Contest 

题意:N个点,M条双向边,K个景点,告诉每个景点所在的位置,一个点可能有多个景点。要游玩第i个景点,要花 Ti 的时间排队,但是在某些点可以买第 i 个景点的快速通道的票,如果买了快速通道的票,只用花 PTi 的时间排队。通过一条边,要花费相应的时间。买票不花时间。问从第1个点开始,游玩了K个景点后,又回到第1个点的最短时间。

N<=50 , k<=8

题解:因为K很小,所以显然状压dp可做。用dp[ i ][ j ][ k ],表示在第 i 个点,已经访问过的景点的状态为 j ,已有的票的状态为 k ,的状态下的最短时间。用floyd处理出两点间的最短距离。我是这样转移的,下一步要么去访问景点,要么去买票。那么可以把一个状态看成一个点,就是求个最短路。最开始我写了发堆优化的dij,T了。仔细分析,一个点最多可以转移出400个状态,边数最坏是状态数的400倍,远大于nlgn(n表示状态数),为稠密图,T是很正常的。换成了spfa就A了。后来我又贪心的优化了下,如果到了一个点一定要把该点所有的票买完,跑了600+ms。

看看了别人的题解,转移还可以写成,到了一个点一定把该点所有的景点访问完,并把该点所有的票买完,这样不会影响最后结果的最优性。一定要把票买完很好理解,贪心就是了。而对于一定要把景点访问完,也可以贪心的想,当票的状态固定的时候,我已经到了这个点,那么我访问完该点所有的景点一定更优,因为票的状态已经固定,在走到其它点再走回该点只能让时间增加,没有意义。

这题还可以用三进制状压做,分别表示访问过,有票没访问过,没票没访问过。这种方法状态数更少,应该更优。

我的代码如下:

//#pragma comment(linker, "/STACK:102400000,102400000")
#include<stdio.h>
#include<queue>
#include<iostream>
#include<algorithm>
#include<string.h>
#include<string>
#include<math.h>
#include<stack>
#define nn 55
#define mod 1000
#define inff 0x3fffffff
typedef __int64 LL;
using namespace std;
int n,m,K;
int tu[nn][nn];
int p[nn],T[nn],pt[nn];
int ve[10][nn];
int len[10];
int dp[nn][(1<<8)][(1<<8)];
bool inque[nn][(1<<8)][(1<<8)];
vector<int>vv[nn];
struct node
{
    int id,jing,piao,val;
    friend bool operator<(node xx,node yy)
    {
        return xx.val>yy.val;
    }
    node(){}
    node(int x,int y,int z,int g)
    {
        id=x,jing=y,piao=z,val=g;
    }
}sta;
//priority_queue<node>que;
queue<node>que;
int ans;
//void gengxin(int id,int jing,int piao,int val)
//{
//    if(dp[id][jing][piao]>val)
//    {
//        dp[id][jing][piao]=val;
//        que.push(node(id,jing,piao,val));
//    }
//}
void gengxin(int id,int jing,int piao,int val)
{
    if(dp[id][jing][piao]>val)
    {
        dp[id][jing][piao]=val;
        if(!inque[id][jing][piao])
        {
            inque[id][jing][piao]=true;
            que.push(node(id,jing,piao,val));
        }
    }
}
void solve()
{
    ans=inff;
    int i,j,k;
    for(i=1;i<=n;i++)
    {
        for(j=0;j<(1<<K);j++)
        {
            for(k=0;k<(1<<K);k++)
            {
                inque[i][j][k]=false;
                dp[i][j][k]=inff;
            }
        }
    }
    dp[1][0][0]=0;
    que.push(node(1,0,0,0));
    int ix,piao;
    while(que.size())
    {
        sta=que.front();
        que.pop();
        inque[sta.id][sta.jing][sta.piao]=false;
       // if(sta.val>dp[sta.id][sta.jing][sta.piao])
            //continue;
        if(sta.jing==(1<<K)-1)
        {
            ans=min(ans,dp[sta.id][sta.jing][sta.piao]+tu[1][sta.id]);
            continue;
        }
        piao=sta.piao;
        for(i=0;i<(int)vv[sta.id].size();i++)
        {
            ix=vv[sta.id][i];
            if((1<<ix)&piao)
                continue;
            piao+=(1<<ix);
        }
        if(piao>sta.piao)
        {
            gengxin(sta.id,sta.jing,piao,dp[sta.id][sta.jing][sta.piao]);
            continue;
        }
        for(i=0;i<K;i++)
        {
            if((1<<i)&sta.jing)
                continue;
            ix=tu[p[i]][sta.id]+dp[sta.id][sta.jing][sta.piao];
            if((1<<i)&sta.piao)
                ix+=pt[i];
            else
                ix+=T[i];
            gengxin(p[i],sta.jing+(1<<i),sta.piao,ix);
            if((1<<i)&sta.piao)
                continue;
            for(j=0;j<len[i];j++)
            {
                ix=dp[sta.id][sta.jing][sta.piao]+tu[sta.id][ve[i][j]];
                gengxin(ve[i][j],sta.jing,sta.piao+(1<<i),ix);
            }
        }
    }
}
int main()
{
    int i,j,k;
    int t,u,v,l;
    int cas=1;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d%d%d",&n,&m,&K);
        for(i=1;i<=n;i++)
        {
            for(j=1;j<=n;j++)
            {
                tu[i][j]=i==j?0:inff;
            }
        }
        for(i=1;i<=m;i++)
        {
            scanf("%d%d%d",&u,&v,&l);
            tu[u][v]=min(tu[u][v],l);
            tu[v][u]=tu[u][v];
        }
        for(k=1;k<=n;k++)
        {
            for(i=1;i<=n;i++)
            {
                for(j=1;j<=n;j++)
                {
                    tu[i][j]=min(tu[i][k]+tu[k][j],tu[i][j]);
                }
            }
        }
        for(i=1;i<=n;i++)
            vv[i].clear();
        for(i=0;i<K;i++)
        {
            len[i]=0;
            scanf("%d%d%d",&p[i],&T[i],&pt[i]);
            scanf("%d",&u);
            while(u--)
            {
                scanf("%d",&v);
                ve[i][len[i]++]=v;;
                vv[v].push_back(i);
            }
        }
        solve();
        printf("Case #%d: %d\n",cas++,ans);
    }
    return 0;
}



你可能感兴趣的:(动态规划,ACM,状态压缩)