http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=2176
2007/2008 ACM International Collegiate Programming ContestYou are given a sequence of n integers a1 , a2 , ... , an in non-decreasing order. In addition to that, you are given several queries consisting of indices i and j (1 ≤ i ≤ j ≤ n). For each query, determine the most frequent value among the integers ai , ... , aj.
The input consists of several test cases. Each test case starts with a line containing two integers n and q(1 ≤ n, q ≤ 100000). The next line contains n integers a1 , ... , an (-100000 ≤ ai ≤ 100000, for each i ∈ {1, ..., n}) separated by spaces. You can assume that for each i ∈ {1, ..., n-1}: ai ≤ ai+1. The following q lines contain one query each, consisting of two integers i and j (1 ≤ i ≤ j ≤ n), which indicate the boundary indices for the query.
The last test case is followed by a line containing a single 0.
For each query, print one line with one integer: The number of occurrences of the most frequent value within the given range.
10 3 -1 -1 1 1 1 1 3 10 10 10 2 3 1 10 5 10 0
1 4 3A naive algorithm may not run in time!
题目大意:
给出一个非降序的排列的整数数组a1,a2,a3...an,你的任务是对于一系列的询问(i,j),回答ai,ai+1,....aj,中出现次数最多的值所出现的次数。
解题思路:RMQ范围最小值问题(大白书P197)
应注意到整个数组是非降序的,所有相等的元素都会聚集到一起。这样就可以把整个数组进行游程编码。比如:-1,1,1,2,2,2,4就可以编码成(-1,1),(1,2),(2,3),(4,1),其中(a,b)表示b个连续的a。用value[i]和count[j]分别表示第i段的数值和出现的次数,num[p],left[p],right[p]分别表示位置p所在段的编号和左右端点的位置,则在下图的情况,每次查询(L,R)的结果为以下三个部分的最大值:从L到L所在段的结束处的元素个数(即right[L]-L+1)、从R所在段的开始处到R处的元素个数(即R-left[R]-1)、中间第num[L]+1段到第num[R]-1段的count的最大值。
#include <stdio.h> #include <iostream> #include <string.h> #include <algorithm> using namespace std; const int maxn=110005; const int inf=2e9; int num[maxn],_left[maxn],_right[maxn],cnt[maxn],d[maxn][30]; int pre,n,m; int RLE()//游程编码 { int x,l=0,count=-1; pre=inf; int size; for(int i=0; i<n; i++) { scanf("%d",&x); if(x!=pre) { for(int j=l; j<i; j++) _right[j]=i-1; l=i; _left[i]=l; count++; pre=x; num[i]=count; cnt[count]=1; } else { _left[i]=l; num[i]=count; cnt[count]++; } } for(int i=l; i<n; i++) _right[i]=n-1; size=count+1; return size; /** printf("\n\n"); for(int i=0;i<n;i++) printf("%d ",_left[i]); printf("\n"); for(int i=0;i<n;i++) printf("%d ",num[i]); printf("\n"); for(int i=0;i<n;i++) printf("%d ",cnt[i]); printf("\n"); for(int i=0;i<n;i++) printf("%d ",_right[i]); printf("\n"); **/ } void RMQ_init() { int n=RLE(); for(int i=0;i<n;i++) d[i][0]=cnt[i]; for(int j=1;(1<<j)<=n;j++) for(int i=0;i+(1<<j)-1<n;i++) d[i][j]=max(d[i][j-1],d[i+(1<<(j-1))][j-1]); } int RMQ_query(int l,int r) { if(l>r) return 0; int k=0; while((1<<(k+1))<=r-l+1)k++;//如果2^(k+1)<=r-l+1,那么k还可以加1 return max(d[l][k],d[r-(1<<k)+1][k]); } int main() { while(~scanf("%d%d",&n,&m)) { if(n==0) break; RMQ_init(); while(m--) { int l,r; scanf("%d%d",&l,&r); l--; r--; if(num[l]==num[r]) { printf("%d\n",r-l+1); continue; } int t1=_right[l]-l+1; int t2=r-_left[r]+1; int t3=RMQ_query(num[l]+1,num[r]-1); printf("%d\n",max(t1,max(t2,t3))); } } return 0; }