poj2446--Chessboard(二分匹配)

Chessboard
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 12811   Accepted: 4005

Description

Alice and Bob often play games on chessboard. One day, Alice draws a board with size M * N. She wants Bob to use a lot of cards with size 1 * 2 to cover the board. However, she thinks it too easy to bob, so she makes some holes on the board (as shown in the figure below). 
poj2446--Chessboard(二分匹配)_第1张图片
We call a grid, which doesn’t contain a hole, a normal grid. Bob has to follow the rules below: 
1. Any normal grid should be covered with exactly one card. 
2. One card should cover exactly 2 normal adjacent grids. 

Some examples are given in the figures below: 
poj2446--Chessboard(二分匹配)_第2张图片 
A VALID solution.
poj2446--Chessboard(二分匹配)_第3张图片 
An invalid solution, because the hole of red color is covered with a card.
poj2446--Chessboard(二分匹配)_第4张图片 
An invalid solution, because there exists a grid, which is not covered.
Your task is to help Bob to decide whether or not the chessboard can be covered according to the rules above.

Input

There are 3 integers in the first line: m, n, k (0 < m, n <= 32, 0 <= K < m * n), the number of rows, column and holes. In the next k lines, there is a pair of integers (x, y) in each line, which represents a hole in the y-th row, the x-th column.

Output

If the board can be covered, output "YES". Otherwise, output "NO".

Sample Input

4 3 2
2 1
3 3

Sample Output

YES

Hint

poj2446--Chessboard(二分匹配)_第5张图片 
A possible solution for the sample input.

Source

POJ Monthly,charlescpp
使用1*2的小长方块覆盖n*m的区域,其中给出的t个点不能覆盖,问存不存该可能
二分匹配的题目,建图是最关键的,1*2的小方块会覆盖住两个方格,所以相邻的方块一定是在不同的点集中,我用的m[][]数组记录n*m,用bfs来分配点,得到左右点集,如果左右点集中的点相邻,就意味着他们之间有一条线,对这个图做二分匹配,求出最大匹配,如果存在由1*2的方块覆盖整体面积,那么就会有  n*m-t = 最大匹配数 * 2 ,否则不存在全部覆盖的可能

#include <stdio.h>
#include <string.h>
#include <math.h>
int p[40][40] ;//0是空白点,-1不可选点,1左点集,2右点集
struct node1
{
    int x , y ;
} l[1600];
struct node2
{
    int x , y ;
} r[1600];
struct node
{
    int x , y ;
} d[1600] ;
int nl , nr , n , m ;
int link[1600] , temp[1600] ;
int f(int x)
{
    int i , j ;
    for(i = 0 ; i < nr ; i++)
    {
        if( temp[i] == 0 &&  fabs(l[x].x - r[i].x) + fabs( l[x].y - r[i].y ) == 1  )
        {
            temp[i] = 1 ;
            if( link[i] == -1 || f( link[i] ) )
            {
                link[i] = x ;
                return 1 ;
            }
        }
    }
    return 0 ;
}
int dd[][2] = { {0,-1},{0,1},{1,0},{-1,0} } ;
void bfs(int i,int j)
{
    int low = 0 , top = 1 , u , v ;
    d[0].x = i ;
    d[0].y = j ;
    p[i][j] = 1 ;
    while(low < top)
    {
        node mid = d[low++] ;
        for(i = 0 ; i < 4 ; i++)
        {
            u = mid.x + dd[i][0] ;
            v = mid.y + dd[i][1] ;
            if(u > 0 && u <= n && v > 0 && v <= m && p[u][v] == 0 )
            {
                if( p[mid.x][mid.y] == 1 )
                    p[u][v] = 2 ;
                else
                    p[u][v] = 1 ;
                d[top].x = u ;
                d[top++].y = v ;
            }
        }
    }
}
int main()
{
    int t , tt , i , j , ans ;
    while(scanf("%d %d %d", &n, &m, &t)!=EOF)
    {
        tt = t ;
        memset(p,0,sizeof(p));
        memset(link,-1,sizeof(link));
        nl = 0 ;
        nr = 0 ;
        ans = 0 ;
        while(t--)
        {
            scanf("%d %d", &j, &i);
            p[i][j] = -1 ;
        }
        if( (n*m-tt)%2 )
        {
            printf("NO\n");
            continue ;
        }
        for(i = 1 ; i <= n ; i++)
            for(j = 1 ; j <= m ; j++)
            {
                if( p[i][j] == 0 )
                {
                    bfs(i,j);
                }
            }
        for(i = 1 ; i <= n ; i++)
            for(j = 1 ; j <= m ; j++)
            {
                if(p[i][j] == 1)
                {
                    l[nl].x = i ;
                    l[nl++].y = j ;
                }
                else if(p[i][j] == 2)
                {
                    r[nr].x = i ;
                    r[nr++].y = j ;
                }

            }
        for(i = 0 ; i < nl ; i++)
        {
            memset(temp,0,sizeof(temp));
            if( f(i) )
            {
                ans++ ;
            }
        }
        if( (n*m-tt) == ans*2 )
            printf("YES\n");
        else
            printf("NO\n");
    }
    return 0;
}


你可能感兴趣的:(poj2446--Chessboard(二分匹配))