- 目标跟踪概念、多目标跟踪算法SORT和deep SORT原理
yhwang-hub
深度学习
目录目标跟踪、单目标跟踪、多目标跟踪的概念欧氏距离、马氏距离、余弦距离欧氏距离马氏距离余弦距离SORT算法原理SORT算法中的匈牙利匹配算法指派问题中的匈牙利算法预测模型(卡尔曼滤波器)数据关联(匈牙利匹配)目标丢失问题的处理SORT算法过程deepSORT算法原理状态估计轨迹处理分配问题的评价指标级联匹配深度表观描述子算法总结目标跟踪、单目标跟踪、多目标跟踪的概念目标跟踪分为静态背景下的目标跟踪
- 第三讲 隐语架构
huang8666
人工智能
第三讲隐语架构产品层白屏黑屏两大模块通过可视化产品,降低终端用户的体验和演示成本通过模块化API降低技术集成商的研发成本隐语产品SecretPad:轻量化安装快速验证POC可定制集成SecretNote:Notebook形式交互式建模多节点一站式管理和交互运行状态跟踪算法层PSI/PIR、DataAnalysis、FederatedLearningPSI(PrivateSetIntesection
- 计算机设计大赛 深度学习交通车辆流量分析 - 目标检测与跟踪 - python opencv
iuerfee
python
文章目录0前言1课题背景2实现效果3DeepSORT车辆跟踪3.1DeepSORT多目标跟踪算法3.2算法流程4YOLOV5算法4.1网络架构图4.2输入端4.3基准网络4.4Neck网络4.5Head输出层5最后0前言优质竞赛项目系列,今天要分享的是**基于深度学习得交通车辆流量分析**该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!学长这里给一个题目综合评分(每项满分5分)难度系数:3分工
- 路径跟踪算法Stanley 实现 c++
Big David
决策规划控制c++自动驾驶算法matplotlibStanley
参考博客:【自动驾驶】Stanley(前轮反馈)实现轨迹跟踪|python实现|c++实现Stanley前轮反馈控制(Frontwheelfeedback),又称Stanley控制。核心思想:基于前轮中心的路径跟踪偏差量对方向盘转向控制量进行计算(PurePursuit是基于后轮中心)。前轮转角控制量:δ=θφ+θy\large\delta=\theta_{\varphi}+\theta_{y}δ
- 多目标检测与跟踪技术详解
小厂程序猿
目标检测人工智能计算机视觉
导言在计算机视觉领域,多目标检测与跟踪(Multi-ObjectTracking,MOT)是一个至关重要的研究方向。它涉及到在视频序列中同时跟踪多个目标,如行人、车辆等。本文将深入探讨多目标检测与跟踪的核心算法和相关挑战。1.基于检测的跟踪算法这类算法首先进行目标检测,然后根据检测到的目标位置进行跟踪。代表性的方法包括JDE(JointDetectionandEmbedding)和SORT(Sim
- 互联网加竞赛 多目标跟踪算法 实时检测 - opencv 深度学习 机器视觉
Mr.D学长
pythonjava
文章目录0前言2先上成果3多目标跟踪的两种方法3.1方法13.2方法24TrackingByDetecting的跟踪过程4.1存在的问题4.2基于轨迹预测的跟踪方式5训练代码6最后0前言优质竞赛项目系列,今天要分享的是深度学习多目标跟踪实时检测该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!学长这里给一个题目综合评分(每项满分5分)难度系数:3分工作量:3分创新点:4分更多资料,项目分享:ht
- Autonomous_Exploration_Development_Environment的PathFollower学习笔记
qq_35971623
学习笔记机器人
1.PathFollow算法简介:PathFollow算法是路径跟踪算法,是在得到由localplanner算法发布的无碰撞路径话题”/path”中的路径数据start_path(相对于车体坐标系的一系列路径点(101个点)),根据车体与目标之间的角度和距离,控制车辆的速度和角速度,使车辆精准按照路径到达目标点。通过输入rqt_graph可看到各话题间的关系,Pathfollow算法接收1.来自l
- 计算机视觉实战项目3(图像分类+目标检测+目标跟踪+姿态识别+车道线识别+车牌识别+无人机检测+A*路径规划+单目测距与测速+行人车辆计数等)
毕设阿力
计算机视觉目标检测目标跟踪
车辆跟踪及测距该项目一个基于深度学习和目标跟踪算法的项目,主要用于实现视频中的目标检测和跟踪。该项目使用了YOLOv5目标检测算法和DeepSORT目标跟踪算法,以及一些辅助工具和库,可以帮助用户快速地在本地或者云端上实现视频目标检测和跟踪!教程博客_传送门链接------->yolov5单目测距+速度测量+目标跟踪(算法介绍和代码)-CSDN博客yolov5deepsort行人/车辆(检测+计数
- [MOT Challenge]官方生成多目标跟踪算法性能评价指标结果,解决test数据集没有gt文件和官网注册问题
Bartender_Jill
目标跟踪人工智能计算机视觉
文章目录⭐⭐⭐内容修正前言一、账号注册1.不要用QQ或163或gmail邮箱2.正常注册流程二、上传测试结果的流程1.使用步骤总结⭐⭐⭐内容修正我先前于2023/4/5日的时候在文章里提到:“提交到官网的文件需要包含测试后的训练集结果和测试后的测试集结果”,该结论经过测试后发现有误。个人于2023/12/8日在评论区的提醒下对MOTChallenge的内容提交进行了重新测试,发现提交到官网的文件并
- stanley 轨迹跟踪算法
”悟道“
控制人工智能
一:简单了解简介:Stanley是一种轨迹跟踪算法;Stanleycontrollow:ComputerControlcmd函数,根据Stanley算法的公式进行代码的编写,所以需要调用接下来的误差计算函数,然后整个前轮转角控制命令分为两部分,分别是由航向误差和由横向误差引起的转角。需要注意的是:1.计算反正切函数值时,建议使用atan2函数,其返回值为点和原点连线与x轴正方向的夹角,值域对应为-
- 数字信号处理7——点到向量的距离
注释远方
数字信号处理算法
目录一、前言二、点到线段的最短距离——向量法三、点到直线的最短距离——直线法四、点到直线最短距离——向量法一、前言其实在工程应用中很多情况下计算点到直线或者点到线段的距离,比如在unity3d游戏软件设计中计算任意形状路径起点和终点连线距离最远的点,比如用于雷达聚类后在多目标跟踪算法中计算哪个sensor距离track最近,另外还需要知道要计算的点位于直线的哪一侧,这些计算在游戏开发或者数字信号后
- 深度视觉目标跟踪进展综述-论文笔记
pzb19841116
计算机视觉目标跟踪人工智能计算机视觉
中科大学报上的一篇综述,总结得很详细,整理了相关笔记。1引言目标跟踪旨在基于初始帧中指定的感兴趣目标(一般用矩形框表示),在后续帧中对该目标进行持续的定位。基于深度学习的跟踪算法,采用的框架包括相关滤波器、分类式网络、双路网络等。处理跟踪任务的角度,分为基于匹配思路的双路网络和基于二分类的辨别式跟踪器。最初的深度跟踪算法聚焦于相关滤波器,通过深度学习的特征+相关滤波器实现。基于双路网络跟踪算法那,
- 【论文阅读|2024 WACV 多目标跟踪Deep-EloU】
Dymc
深度学习python论文论文阅读深度学习人工智能
论文阅读|2024WACV多目标跟踪Deep-EloU摘要1引言(Introduction)2相关工作(RelatedWork)2.1基于卡尔曼滤波器的多目标跟踪算法(Multi-ObjectTrackingusingKalmanFilter)2.2基于定位的多目标跟踪算法(Location-basedMulti-ObjectTracking)2.3基于外观的多目标跟踪(Appearance-ba
- 基于深度学习的多目标跟踪算法
LittroInno
YOLO目标跟踪人工智能
基于深度学习的多目标跟踪(MOT,Multi-ObjectTracking)算法在近年来取得了显著的进步。这些算法主要利用深度学习模型对视频中的多个目标进行检测和跟踪。在介绍一些常见的深度学习多目标跟踪算法之前,我们首先了解一下其基本概念和挑战:目标检测:首先识别视频帧中的目标(如人、车辆等)。数据关联:将连续帧中的检测结果关联起来,形成目标的轨迹。状态估计:估计目标在视频帧中的位置和其他属性(如
- [C#]winform部署官方yolov8-rtdetr目标检测的onnx模型
FL1623863129
C#YOLO目标检测人工智能
【官方框架地址】https://github.com/ultralytics/ultralytics【算法介绍】RTDETR,全称“Real-TimeDetectionwithTransformerforObjectTrackingandDetection”,是一种基于Transformer结构的实时目标检测和跟踪算法。它在目标检测和跟踪领域中具有广泛的应用,尤其是在需要实时处理和高准确率的场景中
- 竞赛保研 多目标跟踪算法 实时检测 - opencv 深度学习 机器视觉
iuerfee
python
文章目录0前言2先上成果3多目标跟踪的两种方法3.1方法13.2方法24TrackingByDetecting的跟踪过程4.1存在的问题4.2基于轨迹预测的跟踪方式5训练代码6最后0前言优质竞赛项目系列,今天要分享的是深度学习多目标跟踪实时检测该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!学长这里给一个题目综合评分(每项满分5分)难度系数:3分工作量:3分创新点:4分更多资料,项目分享:ht
- 目前目标跟踪算法研究202308
爱吃油淋鸡的莫何
目标跟踪算法人工智能
目标跟踪算法综述——附各算法源码和论文概述TBD(two-shot):SORT、DeepSORT、StrongSORT、ByteTrack、OC-SORTJDE(one-shot):BoT-SORT、0MutiSORT(多目标跟踪策略)0.1track+detection训练一个网络使它最小化类内误差,最大化类间误差。1DeepSORT1.1原理1.1.1SORT(2016)SORT论文:SIMP
- MOOSE相关滤波跟踪算法(个人学习笔记)
CHEN7_98
算法学习笔记
MOOSE论文标题“VisualObjectTrackingusingAdaptiveCorrelationFilters”原文地址用滤波器对目标外观进行建模,并通过卷积操作来执行跟踪。参考阅读:目标跟踪经典算法——MOSSE(MinimumOutputSumSquareError)目标跟踪整理(1)之MOSSE相关滤波跟踪原理基于以初始帧中给定的boundingbox来选择目标,并基于示例图像上
- 深度学习目标跟踪简述
LittroInno
深度学习目标跟踪人工智能
深度学习目标跟踪是一个活跃的研究领域,它涉及使用深度学习技术来跟踪视频或实时摄像头中的对象。这个领域通常包括以下几个关键方面:目标检测:在开始跟踪前,首先需要在视频的初始帧中检测到目标。这通常是通过卷积神经网络(CNN)来实现的。特征提取:提取目标的特征,这样算法就能在后续的帧中识别它。这些特征可能包括颜色、形状、纹理等。目标跟踪算法:有多种算法可用于目标跟踪,如Siamese网络、循环神经网络(
- weak_ptr如何能做到解决循环引用又能传递参数呢?
qq_42987967
编程语言学习笔记C#开发语言C#c++垃圾回收
引子:今天在看CLRviaC#的时候看到C#的垃圾回收算法--引用跟踪算法的时候想到以下几个问题。一、引用计数法存在的问题一般引用计数法存在的问题就是不好处理循环引用的问题,但是C++不是有weak_ptr吗?这个引用跟踪的垃圾回收算法看起来还蛮复杂的,跟引用计数法比起来性能消耗估计得大的更多。难不成是引用计数法还有解决不了的问题?于是便用C++的智能指针想出了一种场景:就是既有循环又得传递参数的
- pursuit 纯轨迹跟踪算法
Vieta_Qiu人工智障
https://blog.csdn.net/AdamShan/article/details/80555174
- 目标跟踪算法个人理解-SeqTrack篇
update-forever
算法目标跟踪python人工智能计算机视觉
系列文章目录目标跟踪算法个人理解-KeepTrack篇目标跟踪算法个人理解-GRM篇文章目录前言一、SeqTrack简介二、方法1.Overview2.ImageandSequenceRepresentation3.ModelArchitecture4.TrainingandInference三、实验State-of-the-artcomparisonsonfourlarge-scalebench
- 单目标跟踪算法SiamRPN
AAI机器之心
目标跟踪算法人工智能YOLO计算机视觉机器学习深度学习
目标跟踪算法包括单目标跟踪和多目标跟踪,单目标跟踪在每张图片中只跟踪一个目标。目前单目标跟踪的主要方法分为两大类,基于相关滤波(correlationfilter)的跟踪算法,如CSK,KCF,DCF,SRDCF等;基于深度学习的跟踪算法,如SiamFC,SiamRPN,SiamRPN++等。相比之下,相关滤波的速度更快,深度学习的准确性更高。跟踪相关算法如下:这里主要记录下对SIamRPN跟踪算
- 目标跟踪算法中的卡尔曼滤波学习
AAI机器之心
目标跟踪算法学习人工智能深度学习计算机视觉pytorch
在使用多目标跟踪算法时,接触到卡尔曼滤波,一直没时间总结下,现在来填坑。1.背景知识在理解卡尔曼滤波前,有几个概念值得考虑下:时序序列模型,滤波,线性动态系统1.时间序列模型时间序列模型都可以用如下示意图表示:这个模型包含两个序列,一个是黄色部分的状态序列,用X表示,一个是绿色部分的观测序列(又叫测量序列、证据序列、观察序列,不同的书籍有不同的叫法,在这里统一叫观测序列。)用Y表示。状态序列反应了
- 基于深度学习的视觉目标跟踪进展综述
pzb19841116
人工智能计算机视觉论文解读目标跟踪人工智能计算机视觉
1引言目标跟踪旨在基于初始帧中指定的感兴趣目标(一般用矩形框表示),在后续帧中对该目标进行持续的定位。基于深度学习的跟踪算法,采用的框架包括相关滤波器、分类式网络、双路网络等。处理跟踪任务的角度,分为基于匹配思路的双路网络和基于二分类的辨别式跟踪器。最初的深度跟踪算法聚焦于相关滤波器,通过深度学习的特征+相关滤波器实现。基于双路网络跟踪算法那,将跟踪视为模板匹配,抗干扰能力较差。近期基于Trans
- 大创项目推荐 深度学习交通车辆流量分析 - 目标检测与跟踪 - python opencv
laafeer
python
文章目录0前言1课题背景2实现效果3DeepSORT车辆跟踪3.1DeepSORT多目标跟踪算法3.2算法流程4YOLOV5算法4.1网络架构图4.2输入端4.3基准网络4.4Neck网络4.5Head输出层5最后0前言优质竞赛项目系列,今天要分享的是**基于深度学习得交通车辆流量分析**该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!学长这里给一个题目综合评分(每项满分5分)难度系数:3分工
- 雷达目标跟踪算法流程(最全讲解 & 按步骤即可实现)
深耕智能驾驶
目标跟踪系列目标跟踪算法人工智能
雷达目标跟踪算法流程(最全讲解&按步骤即可实现)本文详细介绍了基于毫米波雷达点云数据的目标跟踪过程及算法。1.目标跟踪的算法框架如下图所示2.具体实现内容2.1点云数据处理雷达目标点云包含的目标信息有:距离、方位角、俯仰角、速度、幅度等,详细特征可参考我的另一篇文章:点云特征有哪些&特征含义&统计算方法(1)坐标转换点云信息从雷达极坐标转换到直角坐标系:x=R×sin(θ)sin(ɸ),y=R×c
- 多目标跟踪算法原理(Sort&DeepSort&ByteTrack)
幸运的的飞起
目标跟踪算法人工智能
目录前言:主要步骤:一、Sort算法流程图:算法步骤:知识掌握:IOU匹配:卡尔曼滤波算法:匈牙利算法:具体流程:算法步骤(假设矩阵为NxN方阵):举个实例:假设有3个工人和3个任务,每个工人可以完成每项任务的不同工作量。我们的目标是将工人分配到任务上,使得总工作量最小。二、DeepSort算法流程图:算法步骤:必备知识:级联匹配:三、ByteTrack算法主要思想:BYTE流程图:BYTE步骤:
- YOLOv8+DeepSORT多目标车辆跟踪(车辆检测+跟踪+车辆计数)(内附免费资源+部署讲解)
-嘟囔着拯救世界-
YOLOv8YOLOpython人工智能yolov8深度学习pytorch
目录一、前言二、开发环境(前提条件)三、环境搭建教程3.1、创建虚拟环境3.2、选择虚拟环境并安装所需要的包3.3、运行代码步骤3.3.1、克隆git储存库3.3.2、转到克隆库的文件夹下3.3.3、安装依赖项3.3.4、转到检测目录下3.3.5、用于yolov8物体检测+跟踪+车辆计数四、效果图一、前言欢迎阅读本篇博客!今天我们深入探索YOLOv8+deepsort视觉跟踪算法。结合YOLOv8
- DeepSORT(特点和核心)
New___dream
深度学习YOLOYOLO笔记python
DeepSORT是一种基于深度学习的目标跟踪算法,它结合了卡尔曼滤波和匈牙利算法,可以在视频中对目标进行跟踪。DeepSORT的主要优点是可以在多个帧之间跟踪目标,即使目标在某些帧中消失或重新出现。它还可以处理多个目标之间的交叉和遮挡。以下是DeepSORT的一些关键特点:1.使用卷积神经网络(CNN)进行目标检测,以识别视频帧中的目标。2.使用卡尔曼滤波进行目标跟踪,以预测目标的位置和速度。3.
- tomcat基础与部署发布
暗黑小菠萝
Tomcat java web
从51cto搬家了,以后会更新在这里方便自己查看。
做项目一直用tomcat,都是配置到eclipse中使用,这几天有时间整理一下使用心得,有一些自己配置遇到的细节问题。
Tomcat:一个Servlets和JSP页面的容器,以提供网站服务。
一、Tomcat安装
安装方式:①运行.exe安装包
&n
- 网站架构发展的过程
ayaoxinchao
数据库应用服务器网站架构
1.初始阶段网站架构:应用程序、数据库、文件等资源在同一个服务器上
2.应用服务和数据服务分离:应用服务器、数据库服务器、文件服务器
3.使用缓存改善网站性能:为应用服务器提供本地缓存,但受限于应用服务器的内存容量,可以使用专门的缓存服务器,提供分布式缓存服务器架构
4.使用应用服务器集群改善网站的并发处理能力:使用负载均衡调度服务器,将来自客户端浏览器的访问请求分发到应用服务器集群中的任何
- [信息与安全]数据库的备份问题
comsci
数据库
如果你们建设的信息系统是采用中心-分支的模式,那么这里有一个问题
如果你的数据来自中心数据库,那么中心数据库如果出现故障,你的分支机构的数据如何保证安全呢?
是否应该在这种信息系统结构的基础上进行改造,容许分支机构的信息系统也备份一个中心数据库的文件呢?
&n
- 使用maven tomcat plugin插件debug关联源代码
商人shang
mavendebug查看源码tomcat-plugin
*首先需要配置好'''maven-tomcat7-plugin''',参见[[Maven开发Web项目]]的'''Tomcat'''部分。
*配置好后,在[[Eclipse]]中打开'''Debug Configurations'''界面,在'''Maven Build'''项下新建当前工程的调试。在'''Main'''选项卡中点击'''Browse Workspace...'''选择需要开发的
- 大访问量高并发
oloz
大访问量高并发
大访问量高并发的网站主要压力还是在于数据库的操作上,尽量避免频繁的请求数据库。下面简
要列出几点解决方案:
01、优化你的代码和查询语句,合理使用索引
02、使用缓存技术例如memcache、ecache将不经常变化的数据放入缓存之中
03、采用服务器集群、负载均衡分担大访问量高并发压力
04、数据读写分离
05、合理选用框架,合理架构(推荐分布式架构)。
- cache 服务器
小猪猪08
cache
Cache 即高速缓存.那么cache是怎么样提高系统性能与运行速度呢?是不是在任何情况下用cache都能提高性能?是不是cache用的越多就越好呢?我在近期开发的项目中有所体会,写下来当作总结也希望能跟大家一起探讨探讨,有错误的地方希望大家批评指正。
1.Cache 是怎么样工作的?
Cache 是分配在服务器上
- mysql存储过程
香水浓
mysql
Description:插入大量测试数据
use xmpl;
drop procedure if exists mockup_test_data_sp;
create procedure mockup_test_data_sp(
in number_of_records int
)
begin
declare cnt int;
declare name varch
- CSS的class、id、css文件名的常用命名规则
agevs
JavaScriptUI框架Ajaxcss
CSS的class、id、css文件名的常用命名规则
(一)常用的CSS命名规则
头:header
内容:content/container
尾:footer
导航:nav
侧栏:sidebar
栏目:column
页面外围控制整体布局宽度:wrapper
左右中:left right
- 全局数据源
AILIKES
javatomcatmysqljdbcJNDI
实验目的:为了研究两个项目同时访问一个全局数据源的时候是创建了一个数据源对象,还是创建了两个数据源对象。
1:将diuid和mysql驱动包(druid-1.0.2.jar和mysql-connector-java-5.1.15.jar)copy至%TOMCAT_HOME%/lib下;2:配置数据源,将JNDI在%TOMCAT_HOME%/conf/context.xml中配置好,格式如下:&l
- MYSQL的随机查询的实现方法
baalwolf
mysql
MYSQL的随机抽取实现方法。举个例子,要从tablename表中随机提取一条记录,大家一般的写法就是:SELECT * FROM tablename ORDER BY RAND() LIMIT 1。但是,后来我查了一下MYSQL的官方手册,里面针对RAND()的提示大概意思就是,在ORDER BY从句里面不能使用RAND()函数,因为这样会导致数据列被多次扫描。但是在MYSQL 3.23版本中,
- JAVA的getBytes()方法
bijian1013
javaeclipseunixOS
在Java中,String的getBytes()方法是得到一个操作系统默认的编码格式的字节数组。这个表示在不同OS下,返回的东西不一样!
String.getBytes(String decode)方法会根据指定的decode编码返回某字符串在该编码下的byte数组表示,如:
byte[] b_gbk = "
- AngularJS中操作Cookies
bijian1013
JavaScriptAngularJSCookies
如果你的应用足够大、足够复杂,那么你很快就会遇到这样一咱种情况:你需要在客户端存储一些状态信息,这些状态信息是跨session(会话)的。你可能还记得利用document.cookie接口直接操作纯文本cookie的痛苦经历。
幸运的是,这种方式已经一去不复返了,在所有现代浏览器中几乎
- [Maven学习笔记五]Maven聚合和继承特性
bit1129
maven
Maven聚合
在实际的项目中,一个项目通常会划分为多个模块,为了说明问题,以用户登陆这个小web应用为例。通常一个web应用分为三个模块:
1. 模型和数据持久化层user-core,
2. 业务逻辑层user-service以
3. web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和use
- 【JVM七】JVM知识点总结
bit1129
jvm
1. JVM运行模式
1.1 JVM运行时分为-server和-client两种模式,在32位机器上只有client模式的JVM。通常,64位的JVM默认都是使用server模式,因为server模式的JVM虽然启动慢点,但是,在运行过程,JVM会尽可能的进行优化
1.2 JVM分为三种字节码解释执行方式:mixed mode, interpret mode以及compiler
- linux下查看nginx、apache、mysql、php的编译参数
ronin47
在linux平台下的应用,最流行的莫过于nginx、apache、mysql、php几个。而这几个常用的应用,在手工编译完以后,在其他一些情况下(如:新增模块),往往想要查看当初都使用了那些参数进行的编译。这时候就可以利用以下方法查看。
1、nginx
[root@361way ~]# /App/nginx/sbin/nginx -V
nginx: nginx version: nginx/
- unity中运用Resources.Load的方法?
brotherlamp
unity视频unity资料unity自学unityunity教程
问:unity中运用Resources.Load的方法?
答:Resources.Load是unity本地动态加载资本所用的方法,也即是你想动态加载的时分才用到它,比方枪弹,特效,某些实时替换的图像什么的,主张此文件夹不要放太多东西,在打包的时分,它会独自把里边的一切东西都会集打包到一同,不论里边有没有你用的东西,所以大多数资本应该是自个建文件放置
1、unity实时替换的物体即是依据环境条件
- 线段树-入门
bylijinnan
java算法线段树
/**
* 线段树入门
* 问题:已知线段[2,5] [4,6] [0,7];求点2,4,7分别出现了多少次
* 以下代码建立的线段树用链表来保存,且树的叶子结点类似[i,i]
*
* 参考链接:http://hi.baidu.com/semluhiigubbqvq/item/be736a33a8864789f4e4ad18
* @author lijinna
- 全选与反选
chicony
全选
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>全选与反选</title>
- vim一些简单记录
chenchao051
vim
mac在/usr/share/vim/vimrc linux在/etc/vimrc
1、问:后退键不能删除数据,不能往后退怎么办?
答:在vimrc中加入set backspace=2
2、问:如何控制tab键的缩进?
答:在vimrc中加入set tabstop=4 (任何
- Sublime Text 快捷键
daizj
快捷键sublime
[size=large][/size]Sublime Text快捷键:Ctrl+Shift+P:打开命令面板Ctrl+P:搜索项目中的文件Ctrl+G:跳转到第几行Ctrl+W:关闭当前打开文件Ctrl+Shift+W:关闭所有打开文件Ctrl+Shift+V:粘贴并格式化Ctrl+D:选择单词,重复可增加选择下一个相同的单词Ctrl+L:选择行,重复可依次增加选择下一行Ctrl+Shift+L:
- php 引用(&)详解
dcj3sjt126com
PHP
在PHP 中引用的意思是:不同的名字访问同一个变量内容. 与C语言中的指针是有差别的.C语言中的指针里面存储的是变量的内容在内存中存放的地址 变量的引用 PHP 的引用允许你用两个变量来指向同一个内容 复制代码代码如下:
<?
$a="ABC";
$b =&$a;
echo
- SVN中trunk,branches,tags用法详解
dcj3sjt126com
SVN
Subversion有一个很标准的目录结构,是这样的。比如项目是proj,svn地址为svn://proj/,那么标准的svn布局是svn://proj/|+-trunk+-branches+-tags这是一个标准的布局,trunk为主开发目录,branches为分支开发目录,tags为tag存档目录(不允许修改)。但是具体这几个目录应该如何使用,svn并没有明确的规范,更多的还是用户自己的习惯。
- 对软件设计的思考
e200702084
设计模式数据结构算法ssh活动
软件设计的宏观与微观
软件开发是一种高智商的开发活动。一个优秀的软件设计人员不仅要从宏观上把握软件之间的开发,也要从微观上把握软件之间的开发。宏观上,可以应用面向对象设计,采用流行的SSH架构,采用web层,业务逻辑层,持久层分层架构。采用设计模式提供系统的健壮性和可维护性。微观上,对于一个类,甚至方法的调用,从计算机的角度模拟程序的运行情况。了解内存分配,参数传
- 同步、异步、阻塞、非阻塞
geeksun
非阻塞
同步、异步、阻塞、非阻塞这几个概念有时有点混淆,在此文试图解释一下。
同步:发出方法调用后,当没有返回结果,当前线程会一直在等待(阻塞)状态。
场景:打电话,营业厅窗口办业务、B/S架构的http请求-响应模式。
异步:方法调用后不立即返回结果,调用结果通过状态、通知或回调通知方法调用者或接收者。异步方法调用后,当前线程不会阻塞,会继续执行其他任务。
实现:
- Reverse SSH Tunnel 反向打洞實錄
hongtoushizi
ssh
實際的操作步驟:
# 首先,在客戶那理的機器下指令連回我們自己的 Server,並設定自己 Server 上的 12345 port 會對應到幾器上的 SSH port
ssh -NfR 12345:localhost:22
[email protected]
# 然後在 myhost 的機器上連自己的 12345 port,就可以連回在客戶那的機器
ssh localhost -p 1
- Hibernate中的缓存
Josh_Persistence
一级缓存Hiberante缓存查询缓存二级缓存
Hibernate中的缓存
一、Hiberante中常见的三大缓存:一级缓存,二级缓存和查询缓存。
Hibernate中提供了两级Cache,第一级别的缓存是Session级别的缓存,它是属于事务范围的缓存。这一级别的缓存是由hibernate管理的,一般情况下无需进行干预;第二级别的缓存是SessionFactory级别的缓存,它是属于进程范围或群集范围的缓存。这一级别的缓存
- 对象关系行为模式之延迟加载
home198979
PHP架构延迟加载
形象化设计模式实战 HELLO!架构
一、概念
Lazy Load:一个对象,它虽然不包含所需要的所有数据,但是知道怎么获取这些数据。
延迟加载貌似很简单,就是在数据需要时再从数据库获取,减少数据库的消耗。但这其中还是有不少技巧的。
二、实现延迟加载
实现Lazy Load主要有四种方法:延迟初始化、虚
- xml 验证
pengfeicao521
xmlxml解析
有些字符,xml不能识别,用jdom或者dom4j解析的时候就报错
public static void testPattern() {
// 含有非法字符的串
String str = "Jamey친ÑԂ
- div设置半透明效果
spjich
css半透明
为div设置如下样式:
div{filter:alpha(Opacity=80);-moz-opacity:0.5;opacity: 0.5;}
说明:
1、filter:对win IE设置半透明滤镜效果,filter:alpha(Opacity=80)代表该对象80%半透明,火狐浏览器不认2、-moz-opaci
- 你真的了解单例模式么?
w574240966
java单例设计模式jvm
单例模式,很多初学者认为单例模式很简单,并且认为自己已经掌握了这种设计模式。但事实上,你真的了解单例模式了么。
一,单例模式的5中写法。(回字的四种写法,哈哈。)
1,懒汉式
(1)线程不安全的懒汉式
public cla