- 【教程4>第7章>第23节】基于FPGA的RS(204,188)译码verilog实现7——欧几里得迭代算法模块
fpga和matlab
#第7章·通信—信道编译码fpga开发RS译码欧几里得迭代教程4
目录1.软件版本2.RS译码器逆元欧几里得算法模块原理分析3.RS译码器逆元欧几里得算法模块的verilog实现3.1RS译码器逆元欧几里得算法模块verilog程序3.2程序解析欢迎订阅FPGA/MATLAB/Simulink系列教程《★教程1:matlab入门100例》《★教程2:fpga入门100例》《★教程3:simulink入门60例》
- 扩展欧几里德算法 递归法 递推法 手算法 原理及实现
黎哩吖
算法人工智能机器学习
扩展欧几里德算法递归法递推法手算法原理及实现顾名思义,扩展欧几里德算法是在欧几里德算法基础上扩展的算法.欧几里德算法和扩展欧几里德算法在用途上的区别:欧几里德算法(gcd):即求两个整数的最大公约数.扩展欧几里德算法:用于求乘法逆元.用于求贝组等式的一个解.欧几里德算法即辗转相除法.C语言实现:intgcd(inta,intb){returnb==0?a:gcd(b,a%b);}注意此算法的终止条
- 手算逆元及手动模拟扩展欧几里得算法及思路推导
一上午的一个小推导先给出exgcd的代码吧intexgcd(inta,intb,int&x,int&y){///x,y起初不知道,是递归往上求解x,yif(b==0){x=1,y=0;returna;///两处return}intd=exgcd(b,a%b,x,y);inttmp=x;x=y,y=tmp-(a/b)*y;returnd;///记得要返回d啊///【a*x+b*y=1中,x是a在模b
- 【密码学】扩展欧几里得算法例题
应付考试的写法:注意:RSA加解密、签名时:计算的是关于φ(n)的逆元不是直接关于n的逆元,d是e的逆元,φ(n)与e互素才可以有逆元已知n=pxq,计算φ(n),计算d:扩展欧几里得算法流程:题目:d·e=1mod96,e=5,求d递归(不断的做除法,辗转相除)的计算一个三元组。有两个初始的三元组:设三元组(x,y,z),x,y,z满足:因为要算5对96的逆元,一般把大的放在前面即:96*x+5
- 扩展欧几里得算法&乘法逆元
GZkx
数论之旅简单题乘法逆元
扩展欧几里得算法——exgcd主要有两个重要的用途:1.求乘法逆元(下面的例题就是)a*b%mod==1->a与b互为在mod意义下的逆元2.求二元一次线性方程exgcd(a,b,x,y)即为a,b的最大公约数,,令gcd(a,b)=a*x+b*y,则x,y也可以得出来了不懂gcd(最大公约数)的童鞋可以先了解一下哦Description给出2个数M和N(M#include#includeusin
- 扩展欧几里得算法求逆元
hesorchen
#扩展欧几里得算法#逆元
扩展欧几里得算法应该是最优的求逆元算法之一,他和费马小定理具有同样的时间复杂度O(log(n))O(log(n))O(log(n)),但是费马小定理需要模数为质数,扩展欧几里得算法则不需要。逆元定义若aaa与ppp互素,则满足(a×x)modp=1(a\timesx)modp=1(a×x)modp=1的xxx为aaa的逆元。显然,有(k×p+1)modp=1(k\timesp+1)modp=1(k
- 【Algo】常见组合类数列
CodeWithMe
C/C++c++c语言算法
文章目录常见组合类数列1常见递推/组合类数列1.1基础递推类数列1.2组合数学数列1.3数论/函数类数列1.4图论/路径问题相关数列1.5算法和结构设计常用数列2示例:有规律数列前10项对比表3参考建议常见组合类数列介绍一些常见具有明显数学规律或递推关系的常见组合类数列。1常见递推/组合类数列1.1基础递推类数列Fibonacci数列F(n)=F(n-1)+F(n-2),F(0)=0,F(1)=1
- Python实例题:Python计算离散数学
目录Python实例题题目代码实现实现原理集合运算:逻辑运算:关系运算:图论:组合数学:关键代码解析1.集合运算2.逻辑运算3.关系运算4.图论使用说明安装依赖:基本用法:示例输出:扩展建议增强功能:用户界面:性能优化:教学辅助:Python实例题题目Python计算离散数学代码实现importnumpyasnpimportmatplotlib.pyplotaspltimportnetworkxa
- mbedtls学习--大数运算
Yanjing-233
mbedtlsmbedtls安全面试算法
文章目录库文件依赖宏接口示例代码算法分析数位统计读取字符串输出字符串数值比较加减计算乘法运算大数除法取模运算指数运算求取最大公约数模逆运算大数计算,顾名思义,指超出64位的数的乘法运算、指数运算和模逆运算,其中模逆运算,特指求逆元,所谓乘法逆元,例如:2∗9mod17=12*9mod17=12∗9mod17=1则9是2关于模17的逆元(余数为1的被除数)或者2*9与1关于模17同余即:9=2−1m
- C++二项式定理:原理、实现与应用
VU-zFaith870
数学c++二项式定理数学
背景鉴于复习,问了问清言二项式定理的应用…只好多找些资源…肝要死了…一、引言二项式定理是数学中一个基本定理,主要用于展开二项式的幂次。在C++编程中,理解并实现二项式定理及其拓展具有重要意义,可以解决组合数学、概率论、算法分析等多个领域的问题。本报告将详细介绍C++二项式定理的原理、实现方法及其拓展应用。二、二项式定理的基本原理二项式定理描述了如何展开(a+b)^n的形式,其中n为非负整数。展开式
- 扩展欧几里得算法简介及代码实现
hnjzsyjyj
信息学竞赛#算法数学基础扩展欧几里得算法裴蜀定理
【扩展欧几里得算法简介】●扩展欧几里得算法(ExtendedEuclideanAlgorithm)是欧几里得算法的扩展版本,不仅能计算两个整数的最大公约数(GCD),还能找到满足贝祖等式(Bézout'sIdentity)ax+by=gcd(a,b)的整数解x和y。它在数论、密码学等领域有重要应用,例如求解模的逆元、求解线性同余方程等。●扩展欧几里得算法求ax+by=gcd(a,b)特解的方法如下
- 初等数论 --- 同余、欧拉定理、费马小定理、求逆元
chstor
算法笔记
文章目录一、同余二、欧拉定理三、费马小定理四、扩展欧几里得算法4.1裴蜀定理五、一元线性同余方程六、逆元求逆元方法一、扩展欧几里得算法求逆元方法二、费马小定理加快速幂一、同余定义当两个整数a,b除以同一个正整数m,若得相同余数,则二整数同余。记为:a≡b(mod m)当两个整数a,b除以同一个正整数m,若得相同余数,则二整数同余。记为:a\equivb(\modm)当两个整数a,b除以同一个正整
- 排列组合非递归算法实现(C#)
techDM
算法c#windowsC#
排列组合是组合数学中的重要概念,用于描述从给定元素集合中选择出若干个元素进行排列或组合的方式。在本文中,我们将讨论如何使用C#编写非递归算法来实现排列组合。排列是指从给定的n个元素中选取r个元素进行排列,排列的顺序很重要。组合是指从给定的n个元素中选取r个元素进行组合,组合的顺序不重要。首先,我们需要实现一个函数来计算给定整数的阶乘。阶乘表示从1到该整数的连续乘积。以下是计算阶乘的函数实现:pub
- 012组合数学——算法备赛
.格子衫.
算法备赛算法
顺序五元组给定一个整数数组A(长度N大于等于5),请问有多少个五元组(a,b,c,d,e)满足以下条件0#definelllonglongusingnamespacestd;llsol(unordered_map&m,intx){llres=0;for(auto&[v,c]:m){if(v*2==x)res+=(c*(c-1));//每个v都多算一次,所以最后除以2elseif(m.count(x
- 【关于数学】感悟(附学习目录)
DataPlayerK
线性代数抽象代数概率论矩阵
一些感悟数学具有艺术美。从某种意义上来说,数学家和画家本质相同,他们都在“刻画”心目中的图景。小时候我总是在思考一个终极问题:数学是什么?我怀念那时我单纯而热烈的执着,此文章就长期记载我对数学的看法吧。2017-2020高中在读数学是不同精巧结构的集合。高中数学竞赛中,不等式/组合数学/数论中充斥着各种“限制下的精巧结构”,使得结构出现了各种各样奇妙的性质。2021-4-14大一在读数学不仅重在结
- 数论---求组合数
@松田
算法c++组合数数论
快速幂:数论-----快速幂-CSDN博客快速幂求逆元:数论----快速幂求逆元-CSDN博客筛质数:筛质数----CSDN博客求组合数I//10万组a,busingnamespacestd;constintN=2010,mod=1e9+7;intc[N][N];voidinit(){for(inti=0;i>n;while(n--){inta,b;cin>>a>>b;coutusingnames
- 逆元的求法
Li_yue_zhen
算法
逆元有三种计算方法,分别是扩展欧几里得、费马小定理推论(快速幂求法)以及线性递推法。一、扩展欧几里得法:1.推导:众所周知,扩展欧几里得是求解二元一次方程的方法。因为逆元的定义为:如果a*b≡1(modp),则:a、b在模p意义下互为逆元。由此,可设k*p+1=a*b。两边同减k*p,得:1=a*b-k*p。因为正负没有关系,所以可以变为a*b+k*p=1。因为我们知道a和p的值,所以可以把这个方
- 了解倒数的概念,乘法逆元就很好理解——解析之【逆元的概念】【逆元的求解方法】
灰阳阳
算法算法裴蜀定理欧几里得算法最大公约数逆元
目录前言一、逆元的概念1、基本定义示例1:a=3,m=7a=3,m=7a=3,m=7示例2:a=2,m=5a=2,m=5a=2,m=52、乘法逆元有什么用3、相关性质二、求解逆元的方法1、费马小定理求乘法逆元定义费马小定理求逆元的方法总结模板题2、扩展欧几里得算法求逆元定义扩展欧几里得算法求逆元的方法总结模板题3、递推公式求逆元定义递推公式的推导示例总结前言首先,下面讨论的是数论相关内容。主要研究
- 【算法】数论基础——逆元的概念与应用 python
查理零世
算法python
文章目录前言一、什么是逆元?二、逆元的存在条件三、如何计算逆元?1.扩展欧几里得算法(ExtendedEuclideanAlgorithm)2.使用费马小定理(Fermat'sLittleTheorem)四、应用场景示例:求排列数和组合数前言逆元(ModularMultiplicativeInverse)在模运算中是一个非常重要的概念,特别是在需要执行除法操作时。因为在模p的情况下,直接进行除法是
- 实验一-密码学数学基础
那就摆吧
学习=进步知识密码学
实验一密码学数学基础一、实验目的掌握最大公因数的计算方法,理解其在密码学中的重要性。学习扩展欧几里得算法,能够计算乘法逆元。熟悉模幂运算的方法,了解其在加密和签名算法中的应用。二、实验原理最大公因数最大公因数(GCD)是两个整数的最大公因数,是数论中一个基本概念。在密码学中,计算GCD用于判断两个数是否互素,有以下三种常见方法:暴力穷举法通过列举所有可能的公约数来找到最大公约数。具体操作是依次检查
- 数据结构与算法-数学-基础数学算法(筛质数,最大公约数,最小公倍数,质因数算法,快速幂,乘法逆元,欧拉函数)
一个人在码代码的章鱼
#数学算法学习算法c++数据结构
一:筛质数:1-埃氏筛法该算法核心是从2开始,把每个质数的倍数标记为合数,时间复杂度约为O(nloglogn)。#include#includeusingnamespacestd;constintN=1000010;boolst[N];//标记数组,true表示是合数,false表示是质数voidget_primes(intn){for(inti=2;i>n;get_primes(n);for(i
- 密码学----RSA算法
扬子期
密码学算法
这里写目录标题一、原理二、求解逆元相关习题一、原理参考链接:银行密码系统安全吗?质数(素数)到底有啥用?李永乐老师11分钟讲RSA加密算法二、求解逆元同时视频里还涉及到的是负数的逆元,如何转化为正数。参考链接:扩展欧几里得算法求逆元相关习题在RSA体制中,已知p=5,q=17,加密密钥e=5,请求出解密密钥d,并求出明文m=12对应的密文。
- 青少年编程与数学 02-015 大学数学知识点 06课题、离散数学
明月看潮生
编程与数学第02阶段青少年编程编程与数学大学数学离散数学
青少年编程与数学02-015大学数学知识点06课题、离散数学一、数理逻辑二、集合论三、代数系统四、图论五、初等数论六、组合数学总结离散数学是研究离散对象及其结构的数学学科,它在计算机科学、信息论、密码学等领域有着广泛的应用。这里是离散数学核心知识点的详细汇总。一、数理逻辑命题逻辑基本概念:命题、命题常项、命题变项、联结词(如“非”、“或”、“与”等)、命题公式。悖论与非命题:悖论指自相矛盾的命题,
- 模运算核心性质与算法应用:从数学原理到编程实践
EnigmaCoder
算法算法
目录前言数学性质:模运算的理论基石基本定义:余数的本质四则运算规则:保持同余性的关键编程实践:模运算的工程化技巧避免数值溢出:分步取模是关键处理负数取模:确保结果非负大数幂取模:快速幂算法组合数取模:预计算阶乘与逆元常见问题解决方案:一张表帮你避坑总结:模运算的核心价值前言大家好!我是EnigmaCoder。在算法设计与数论问题中,模运算(ModuloOperation)是处理大数、周期性问题和哈
- RSA非对称加密算法深度解析与技术实现指南
安全
一、密码学基础与RSA背景RSA算法(Rivest-Shamir-Adleman)是首个实用的非对称加密体系,由MIT学者于1977年提出。其数学基础建立在大数分解难题和欧拉定理之上,核心思想是利用模指数运算构造单向陷门函数。数学预备知识:欧拉函数φ(n):小于n且与n互质的正整数数量贝祖定理:gcd(a,b)=ax+by的解存在性模逆元:a·a⁻¹≡1modn的解存在条件费马小定理:a^(p-1
- RSA非对称加密算法深度解析与技术实现指南
网安秘谈
算法
一、密码学基础与RSA背景RSA算法(Rivest-Shamir-Adleman)是首个实用的非对称加密体系,由MIT学者于1977年提出。其数学基础建立在大数分解难题和欧拉定理之上,核心思想是利用模指数运算构造单向陷门函数。数学预备知识:欧拉函数φ(n):小于n且与n互质的正整数数量贝祖定理:gcd(a,b)=ax+by的解存在性模逆元:a·a⁻¹≡1modn的解存在条件费马小定理:a^(p-1
- 蓝桥杯Python赛道备赛——Day6:算术(二)(数学问题)
SKY YEAM
蓝桥杯备赛蓝桥杯python职场和发展
本期博客是蓝桥杯备赛中算术(数学问题)的第二期,包括:快速幂算法、逆元(模意义下的倒数)、组合数计算和排列数计算。每一种数学问题都在给出定义的同时,给出了其求解方法的示例代码,以供低年级师弟师妹们学习和练习。前序知识:(1)Python基础语法算术(二)(数学问题)一、快速幂算法二、逆元(模意义下的倒数)三、组合数计算四、排列数计算一、快速幂算法1.定义:快速计算大指数幂的算法。2.算法原理:二进
- 【蓝桥杯】24省赛:数字串个数
遥感小萌新
蓝桥杯蓝桥杯职场和发展
思路本质是组合数学问题:9个数字组成10000位数字有9**10000可能不包括3的可能8**10000不包括7的可能8**10000既不包括3也不包括77**10000根据容斥原理:结果为9∗∗10000−8∗∗10000−8∗∗10000+7∗∗100009**10000-8**10000-8**10000+7**100009∗∗10000−8∗∗10000−8∗∗10000+7∗∗10000
- 洛谷模板汇整
Alaso_shuang
算法分类算法
普及-P3378【模板】堆P3367【模板】并查集P1177【模板】快速排序P3383【模板】线性筛素数P3370【模板】字符串哈希P3366【模板】最小生成树P1226【模板】快速幂||取余运算普及/提高-P3385【模板】负环P3865【模板】ST表P8306【模板】字典树P5788【模板】单调栈P3811【模板】乘法逆元P4549【模板】裴蜀定理P3372【模板】线段树1P3382【模板】三
- 卡特兰数 ← C++ 递推实现
hnjzsyjyj
信息学竞赛#模拟算法与基础语法递推法卡特兰数
【知识解析】●卡特兰数(Catalannumber)是组合数学中一个常出现在各种计数问题中的数列。若从第0项开始,则卡特兰数列h[n]为:1,1,2,5,14,42,132,429,1430,4862,16796,58786,208012,742900,2674440,9694845,35357670,129644790,…●卡特兰数列h[n]有如下4种等价的递推式:h[n]=h[0]*h[n−1
- jQuery 键盘事件keydown ,keypress ,keyup介绍
107x
jsjquerykeydownkeypresskeyup
本文章总结了下些关于jQuery 键盘事件keydown ,keypress ,keyup介绍,有需要了解的朋友可参考。
一、首先需要知道的是: 1、keydown() keydown事件会在键盘按下时触发. 2、keyup() 代码如下 复制代码
$('input').keyup(funciton(){  
- AngularJS中的Promise
bijian1013
JavaScriptAngularJSPromise
一.Promise
Promise是一个接口,它用来处理的对象具有这样的特点:在未来某一时刻(主要是异步调用)会从服务端返回或者被填充属性。其核心是,promise是一个带有then()函数的对象。
为了展示它的优点,下面来看一个例子,其中需要获取用户当前的配置文件:
var cu
- c++ 用数组实现栈类
CrazyMizzz
数据结构C++
#include<iostream>
#include<cassert>
using namespace std;
template<class T, int SIZE = 50>
class Stack{
private:
T list[SIZE];//数组存放栈的元素
int top;//栈顶位置
public:
Stack(
- java和c语言的雷同
麦田的设计者
java递归scaner
软件启动时的初始化代码,加载用户信息2015年5月27号
从头学java二
1、语言的三种基本结构:顺序、选择、循环。废话不多说,需要指出一下几点:
a、return语句的功能除了作为函数返回值以外,还起到结束本函数的功能,return后的语句
不会再继续执行。
b、for循环相比于whi
- LINUX环境并发服务器的三种实现模型
被触发
linux
服务器设计技术有很多,按使用的协议来分有TCP服务器和UDP服务器。按处理方式来分有循环服务器和并发服务器。
1 循环服务器与并发服务器模型
在网络程序里面,一般来说都是许多客户对应一个服务器,为了处理客户的请求,对服务端的程序就提出了特殊的要求。
目前最常用的服务器模型有:
·循环服务器:服务器在同一时刻只能响应一个客户端的请求
·并发服务器:服
- Oracle数据库查询指令
肆无忌惮_
oracle数据库
20140920
单表查询
-- 查询************************************************************************************************************
-- 使用scott用户登录
-- 查看emp表
desc emp
- ext右下角浮动窗口
知了ing
JavaScriptext
第一种
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/
- 浅谈REDIS数据库的键值设计
矮蛋蛋
redis
http://www.cnblogs.com/aidandan/
原文地址:http://www.hoterran.info/redis_kv_design
丰富的数据结构使得redis的设计非常的有趣。不像关系型数据库那样,DEV和DBA需要深度沟通,review每行sql语句,也不像memcached那样,不需要DBA的参与。redis的DBA需要熟悉数据结构,并能了解使用场景。
- maven编译可执行jar包
alleni123
maven
http://stackoverflow.com/questions/574594/how-can-i-create-an-executable-jar-with-dependencies-using-maven
<build>
<plugins>
<plugin>
<artifactId>maven-asse
- 人力资源在现代企业中的作用
百合不是茶
HR 企业管理
//人力资源在在企业中的作用人力资源为什么会存在,人力资源究竟是干什么的 人力资源管理是对管理模式一次大的创新,人力资源兴起的原因有以下点: 工业时代的国际化竞争,现代市场的风险管控等等。所以人力资源 在现代经济竞争中的优势明显的存在,人力资源在集团类公司中存在着 明显的优势(鸿海集团),有一次笔者亲自去体验过红海集团的招聘,只 知道人力资源是管理企业招聘的 当时我被招聘上了,当时给我们培训 的人
- Linux自启动设置详解
bijian1013
linux
linux有自己一套完整的启动体系,抓住了linux启动的脉络,linux的启动过程将不再神秘。
阅读之前建议先看一下附图。
本文中假设inittab中设置的init tree为:
/etc/rc.d/rc0.d
/etc/rc.d/rc1.d
/etc/rc.d/rc2.d
/etc/rc.d/rc3.d
/etc/rc.d/rc4.d
/etc/rc.d/rc5.d
/etc
- Spring Aop Schema实现
bijian1013
javaspringAOP
本例使用的是Spring2.5
1.Aop配置文件spring-aop.xml
<?xml version="1.0" encoding="UTF-8"?>
<beans
xmlns="http://www.springframework.org/schema/beans"
xmln
- 【Gson七】Gson预定义类型适配器
bit1129
gson
Gson提供了丰富的预定义类型适配器,在对象和JSON串之间进行序列化和反序列化时,指定对象和字符串之间的转换方式,
DateTypeAdapter
public final class DateTypeAdapter extends TypeAdapter<Date> {
public static final TypeAdapterFacto
- 【Spark八十八】Spark Streaming累加器操作(updateStateByKey)
bit1129
update
在实时计算的实际应用中,有时除了需要关心一个时间间隔内的数据,有时还可能会对整个实时计算的所有时间间隔内产生的相关数据进行统计。
比如: 对Nginx的access.log实时监控请求404时,有时除了需要统计某个时间间隔内出现的次数,有时还需要统计一整天出现了多少次404,也就是说404监控横跨多个时间间隔。
Spark Streaming的解决方案是累加器,工作原理是,定义
- linux系统下通过shell脚本快速找到哪个进程在写文件
ronin47
一个文件正在被进程写 我想查看这个进程 文件一直在增大 找不到谁在写 使用lsof也没找到
这个问题挺有普遍性的,解决方法应该很多,这里我给大家提个比较直观的方法。
linux下每个文件都会在某个块设备上存放,当然也都有相应的inode, 那么透过vfs.write我们就可以知道谁在不停的写入特定的设备上的inode。
幸运的是systemtap的安装包里带了inodewatch.stp,位
- java-两种方法求第一个最长的可重复子串
bylijinnan
java算法
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
public class MaxPrefix {
public static void main(String[] args) {
String str="abbdabcdabcx";
- Netty源码学习-ServerBootstrap启动及事件处理过程
bylijinnan
javanetty
Netty是采用了Reactor模式的多线程版本,建议先看下面这篇文章了解一下Reactor模式:
http://bylijinnan.iteye.com/blog/1992325
Netty的启动及事件处理的流程,基本上是按照上面这篇文章来走的
文章里面提到的操作,每一步都能在Netty里面找到对应的代码
其中Reactor里面的Acceptor就对应Netty的ServerBo
- servelt filter listener 的生命周期
cngolon
filterlistenerservelt生命周期
1. servlet 当第一次请求一个servlet资源时,servlet容器创建这个servlet实例,并调用他的 init(ServletConfig config)做一些初始化的工作,然后调用它的service方法处理请求。当第二次请求这个servlet资源时,servlet容器就不在创建实例,而是直接调用它的service方法处理请求,也就是说
- jmpopups获取input元素值
ctrain
JavaScript
jmpopups 获取弹出层form表单
首先,我有一个div,里面包含了一个表单,默认是隐藏的,使用jmpopups时,会弹出这个隐藏的div,其实jmpopups是将我们的代码生成一份拷贝。
当我直接获取这个form表单中的文本框时,使用方法:$('#form input[name=test1]').val();这样是获取不到的。
我们必须到jmpopups生成的代码中去查找这个值,$(
- vi查找替换命令详解
daizj
linux正则表达式替换查找vim
一、查找
查找命令
/pattern<Enter> :向下查找pattern匹配字符串
?pattern<Enter>:向上查找pattern匹配字符串
使用了查找命令之后,使用如下两个键快速查找:
n:按照同一方向继续查找
N:按照反方向查找
字符串匹配
pattern是需要匹配的字符串,例如:
1: /abc<En
- 对网站中的js,css文件进行打包
dcj3sjt126com
PHP打包
一,为什么要用smarty进行打包
apache中也有给js,css这样的静态文件进行打包压缩的模块,但是本文所说的不是以这种方式进行的打包,而是和smarty结合的方式来把网站中的js,css文件进行打包。
为什么要进行打包呢,主要目的是为了合理的管理自己的代码 。现在有好多网站,你查看一下网站的源码的话,你会发现网站的头部有大量的JS文件和CSS文件,网站的尾部也有可能有大量的J
- php Yii: 出现undefined offset 或者 undefined index解决方案
dcj3sjt126com
undefined
在开发Yii 时,在程序中定义了如下方式:
if($this->menuoption[2] === 'test'),那么在运行程序时会报:undefined offset:2,这样的错误主要是由于php.ini 里的错误等级太高了,在windows下错误等级
- linux 文件格式(1) sed工具
eksliang
linuxlinux sed工具sed工具linux sed详解
转载请出自出处:
http://eksliang.iteye.com/blog/2106082
简介
sed 是一种在线编辑器,它一次处理一行内容。处理时,把当前处理的行存储在临时缓冲区中,称为“模式空间”(pattern space),接着用sed命令处理缓冲区中的内容,处理完成后,把缓冲区的内容送往屏幕。接着处理下一行,这样不断重复,直到文件末尾
- Android应用程序获取系统权限
gqdy365
android
引用
如何使Android应用程序获取系统权限
第一个方法简单点,不过需要在Android系统源码的环境下用make来编译:
1. 在应用程序的AndroidManifest.xml中的manifest节点
- HoverTree开发日志之验证码
hvt
.netC#asp.nethovertreewebform
HoverTree是一个ASP.NET的开源CMS,目前包含文章系统,图库和留言板功能。代码完全开放,文章内容页生成了静态的HTM页面,留言板提供留言审核功能,文章可以发布HTML源代码,图片上传同时生成高品质缩略图。推出之后得到许多网友的支持,再此表示感谢!留言板不断收到许多有益留言,但同时也有不少广告,因此决定在提交留言页面增加验证码功能。ASP.NET验证码在网上找,如果不是很多,就是特别多
- JSON API:用 JSON 构建 API 的标准指南中文版
justjavac
json
译文地址:https://github.com/justjavac/json-api-zh_CN
如果你和你的团队曾经争论过使用什么方式构建合理 JSON 响应格式, 那么 JSON API 就是你的 anti-bikeshedding 武器。
通过遵循共同的约定,可以提高开发效率,利用更普遍的工具,可以是你更加专注于开发重点:你的程序。
基于 JSON API 的客户端还能够充分利用缓存,
- 数据结构随记_2
lx.asymmetric
数据结构笔记
第三章 栈与队列
一.简答题
1. 在一个循环队列中,队首指针指向队首元素的 前一个 位置。
2.在具有n个单元的循环队列中,队满时共有 n-1 个元素。
3. 向栈中压入元素的操作是先 移动栈顶指针&n
- Linux下的监控工具dstat
网络接口
linux
1) 工具说明dstat是一个用来替换 vmstat,iostat netstat,nfsstat和ifstat这些命令的工具, 是一个全能系统信息统计工具. 与sysstat相比, dstat拥有一个彩色的界面, 在手动观察性能状况时, 数据比较显眼容易观察; 而且dstat支持即时刷新, 譬如输入dstat 3, 即每三秒收集一次, 但最新的数据都会每秒刷新显示. 和sysstat相同的是,
- C 语言初级入门--二维数组和指针
1140566087
二维数组c/c++指针
/*
二维数组的定义和二维数组元素的引用
二维数组的定义:
当数组中的每个元素带有两个下标时,称这样的数组为二维数组;
(逻辑上把数组看成一个具有行和列的表格或一个矩阵);
语法:
类型名 数组名[常量表达式1][常量表达式2]
二维数组的引用:
引用二维数组元素时必须带有两个下标,引用形式如下:
例如:
int a[3][4]; 引用:
- 10点睛Spring4.1-Application Event
wiselyman
application
10.1 Application Event
Spring使用Application Event给bean之间的消息通讯提供了手段
应按照如下部分实现bean之间的消息通讯
继承ApplicationEvent类实现自己的事件
实现继承ApplicationListener接口实现监听事件
使用ApplicationContext发布消息