- 基于二阶卡尔曼滤波的陀螺仪及加速度计信号融合的姿态角度测量
星e雨
嵌入式
★基于陀螺仪及加速度计信号融合的姿态角度测量1、系统组成本文所采用的姿态角度测控系统主要由加速度计、陀螺仪、微控制器、滤波电路、电机调速器、无刷电机等部分组成.姿态检测系统的硬件平台如图1,由微处理器对陀螺仪、滤波电路和加速度计构成的传感器组进行高速A/D采样后,通过卡尔曼滤波器对传感器数据进行补偿和信息融合,得到准确的姿态角度信号,此角度信号再通过PID控制器运算,输出给电子调速器转换成PWM信
- WebRTC 中带宽估计与拥塞控制算法
逆风了我
WebRTCwebrtc
WebRTC中的带宽估计与拥塞控制算法有很多,以下是其中几种:-GCC(GoogleCongestionControl):基于丢包的带宽估计,其基本思想是根据丢包的多少来判断网络的拥塞程度。丢包越多则认为网络越拥塞,发送速率就需要降低;如果没有丢包,则说明网络状况较好,可以提高发送码率以探测是否有更多的带宽可用。-Goog-REMB:基于接收端的延迟算法,利用延迟值,通过卡尔曼滤波器估计出下一时刻
- 卡尔曼滤波详解(1)
见牛羊
人工智能人工智能数学建模
目录1.核心思想2.五个公式的解读2.1预测部分2.2更新部分3.公式的实际应用4.调参方法1.核心思想首先,卡尔曼滤波器可以用来估计系统的状态,这个状态是时间序列上的,利用上一时刻的状态可以预测当前时刻的状态,利用当前时刻的观测可以更新和修正当前时刻的预测。这么说可能有点绕,看下图。绿色的x表示系统的状态,y表示对系统状态的观测,蓝色的x表示修正后的状态。卡尔曼滤波的核心思想,就是用利用蓝色进行
- 第1章 数字基础
猫三他爹
引在本章中,我们将尝试讨论整个文本中使用的所有数值技术。我们将首先讨论向量和矩阵,并说明在应用卡尔曼滤波方程时我们需要知道的各种操作。接下来,我们将展示如何使用两种不同的数值积分技术来求解线性和非线性微分方程。当我们必须将表示现实世界的微分方程整合在用于评估卡尔曼滤波器性能的模拟中时,数值积分技术是必要的。此外,有时需要数值积分技术来传播来自非线性微分方程的状态。接下来,我们将回顾用于表示随机现象
- DeepSORT算法实现车辆和行人跟踪计数和是否道路违规检测(代码+教程)
毕设阿力
算法
DeepSORT算法是一种用于目标跟踪的算法,它可以对车辆和行人进行跟踪计数,并且可以检测是否存在道路违规行为。该算法采用深度学习技术来提取特征,并使用卡尔曼滤波器来估计物体的速度和位置。DeepSORT算法通过首先使用目标检测算法来识别出场景中的车辆和行人,然后使用卷积神经网络(CNN)来提取物体的特征。接着,该算法使用余弦相似度来计算物体之间的相似度,并使用匈牙利算法来匹配跟踪器和检测器之间的
- 【论文阅读|2024 WACV 多目标跟踪Deep-EloU】
Dymc
深度学习python论文论文阅读深度学习人工智能
论文阅读|2024WACV多目标跟踪Deep-EloU摘要1引言(Introduction)2相关工作(RelatedWork)2.1基于卡尔曼滤波器的多目标跟踪算法(Multi-ObjectTrackingusingKalmanFilter)2.2基于定位的多目标跟踪算法(Location-basedMulti-ObjectTracking)2.3基于外观的多目标跟踪(Appearance-ba
- [足式机器人]Part2 Dr. CAN学习笔记- Kalman Filter卡尔曼滤波器Ch05-3+4
LiongLoure
运动学与动力学学习笔记
本文仅供学习使用本文参考:B站:DR_CANDr.CAN学习笔记-KalmanFilter卡尔曼滤波器Ch05-3+43.Stepbystep:DeriationofKalmenGain卡尔曼增益/因数详细推导4.Priori/PosterrorierrorCovarianceMartix误差协方差矩阵3.Stepbystep:DeriationofKalmenGain卡尔曼增益/因数详细推导4.
- [足式机器人]Part2 Dr. CAN学习笔记- Kalman Filter卡尔曼滤波器Ch05-5+6
LiongLoure
控制算法学习笔记
本文仅供学习使用本文参考:B站:DR_CANDr.CAN学习笔记-KalmanFilter卡尔曼滤波器Ch05-5+65.AnExample2D例子6.ExtendedKalmanFilter扩展卡尔曼滤波器(EKF)5.AnExample2D例子6.ExtendedKalmanFilter扩展卡尔曼滤波器(EKF)
- [足式机器人]Part2 Dr. CAN学习笔记- Kalman Filter卡尔曼滤波器Ch05
LiongLoure
控制算法学习笔记
本文仅供学习使用本文参考:B站:DR_CANDr.CAN学习笔记-KalmanFilter卡尔曼滤波器Ch051.RecursiveAlgirithm递归算法2.DataFusion数据融合CovarinceMatrix协方差矩阵StateSpace状态空间方程Observation观测器3.Stepbystep:DeriationofKalmenGain卡尔曼增益/因数详细推导4.Priori/
- [足式机器人]Part2 Dr. CAN学习笔记- Kalman Filter卡尔曼滤波器Ch05-1+2
LiongLoure
控制算法学习笔记
本文仅供学习使用本文参考:B站:DR_CANDr.CAN学习笔记-KalmanFilter卡尔曼滤波器Ch05-1+21.RecursiveAlgirithm递归算法2.DataFusion数据融合CovarinceMatrix协方差矩阵StateSpace状态空间方程Observation观测器1.RecursiveAlgirithm递归算法2.DataFusion数据融合CovarinceMa
- 车端中GPS定位飘移解决浅谈
MarkHD
汽车
GPS定位飘移的解决方法有多种,以下是一些常用的方法:硬件改善:在GPS定位器的硬件设计上进行优化,减少对GPS信号的干扰。例如,选择合适的PCB布局和布线方式,避免信号干扰和失真。此外,可以选择具有抗干扰性能更强的GPS模块和天线,以提高信号接收质量。软件滤波:软件滤波是一种有效的方法来处理GPS定位飘移。通过软件算法来过滤掉错误的卫星信号和噪声,提高定位精度和可靠性。例如,可以采用卡尔曼滤波器
- 卡尔曼滤波基本原理详解
YRr YRr
卡尔曼滤波控制算法stm32嵌入式硬件单片机
卡尔曼滤波卡尔曼滤波简介卡尔曼滤波器(KalmanFilter)是一种高效的递推滤波器(即基于上一个时刻的估计来更新当前时刻的估计),它能够从一系列含有噪声的观测数据中估计动态系统的状态。它在1960年由鲁道夫·卡尔曼提出,如今广泛应用于航空航天、汽车导航系统、机器人导航以及经济学等领域。基本原理卡尔曼滤波器基于线性动态系统的状态空间表示法。它假设系统状态是线性的,并且过程噪声和观测噪声均为高斯分
- Kalman_Filter卡尔曼滤波器计算,陀螺仪卡尔曼滤波角度估算及代码
LuDvei
STM32嵌入式硬件智能硬件单片机硬件工程stm32mcu
目录1.向量轴的空间角度角度计算2.正态分布3.方差、协方差4.卡尔曼公式计算4.1状态空间方程4.2协方差矩阵4.3卡尔曼增益4.4状态更新方程4.5协方差更新方程5.陀螺仪卡尔曼滤波完整代码1.向量轴的空间角度角度计算以横滚角为例,X轴旋转需要一个初始角度,Y、Z轴都会跟随X轴旋转而转动,我们认为Y轴平行于水平面时,横滚角Roll的角度为0。从X轴观测,假设Y轴由水平面转动θ角度,则:accY
- 六.卡尔曼滤波器开发实践之六: 无损卡尔曼滤波器(UKF)进阶-白话讲解篇
okgwf
滤波器卡尔曼滤波器多传感器数据融合人工智能
本系列文章主要介绍如何在工程实践中使用卡尔曼滤波器,分七个小节介绍:一.卡尔曼滤波器开发实践之一:五大公式二.卡尔曼滤波器开发实践之二:一个简单的位置估计卡尔曼滤波器三.卡尔曼滤波器(EKF)开发实践之三:基于三个传感器的海拔高度数据融合四.卡尔曼滤波器(EKF)开发实践之四:ROS系统位姿估计包robot_pose_ekf详解五.卡尔曼滤波器(EKF)开发实践之五:编写自己的EKF替换robot
- 卡尔曼滤波的理解以及参数调整
sxl-63
卡尔曼滤波
一、前言卡尔曼滤波器是一种最优线性状态估计方法(等价于“在最小均方误差准则下的最佳线性滤波器”),所谓状态估计就是通过数学方法寻求与观测数据最佳拟合的状态向量。在移动机器人导航方面,卡尔曼滤波是最常用的状态估计方法。直观上来讲,卡尔曼滤波器在这里起了数据融合的作用,只需要输入当前的测量值(多个传感器数据)和上一个周期的估计值就能估计当前的状态,这个估计出来的当前状态综合考量了传感器数据(即所谓的观
- 如何避免卡尔曼滤波器的发散? Q P R参数怎么调?
深耕智能驾驶
目标跟踪系列算法卡尔曼滤波目标跟踪
文章目录1.什么是发散2.发散的原因3.解决方法4.参数意义及调试方法5.工程经验(1)抑制P矩阵发散(2)抑制K矩阵发散1.什么是发散当滤波的实际误差远远超过滤波误差的允许范围,甚至于趋向无穷大,使得滤波器推动作用,这种现象叫做滤波的发散。2.发散的原因(1)系统的数学模型和噪声的统计模型不准确,这些模型不能反映真实的物理过程,使得观测值与模型不相对应。(2)计算机的截断误差不断积累,会使计算误
- 【滤波第三期】卡尔曼滤波的原理和C代码
撞上电子
算法机器学习人工智能线性代数
卡尔曼滤波(KalmanFilter)是一种递归的、自适应的滤波算法,广泛应用于估计系统状态和观测过程中的噪声。它最初在1960年被提出,被认为是控制理论和信号处理领域中最重要的发展之一。卡尔曼滤波器在许多领域,包括导航、机器人、金融和通信系统中都有广泛的应用。1,基本原理:卡尔曼滤波器的核心思想是融合系统的动态模型和实际的观测数据,通过对过程和测量噪声的估计,提供对系统状态的最优估计。其基本原理
- 卡尔曼滤波原理
Nav.
算法matlab
1卡尔曼滤波原理 卡尔曼滤波算法作为一种重要的最优估计理论被广泛应用于各种领域。组合导航系统的设计一般都是采用Kalman滤波器,Kalman滤波器最早和最成功的应用实例便是在导航领域。卡尔曼滤波有连续型和离散型两种形式,连续型卡尔曼滤波器常用于卡尔曼滤波的理论性能分析,离散型卡尔曼滤波器可以在数字计算机上直接实现,本文将介绍数字型卡尔曼滤波器的使用。 假设有一个离散线性系统,k时刻的系统状态
- 【MATLAB源码-第99期】基于matlab的OFDM系统卡尔曼滤波(kalman)信道估计,对比LS,MMSE。
Matlab程序猿
MATLAB信道估计与均衡通信原理matlab开发语言信息与通信
操作环境:MATLAB2022a1、算法描述卡尔曼滤波器(KalmanFilter)是一种有效的递归滤波器,它能够从一系列的含有噪声的测量中估计动态系统的状态。在无线通信领域,尤其是在正交频分复用(OFDM)系统中,卡尔曼滤波器被广泛应用于信道估计。下面详细描述Kalman信道估计的过程:1.基本原理:在OFDM系统中,由于多径效应和多普勒频移,信道的特性会随时间而变化。卡尔曼滤波器通过对接收信号
- yolov5 deepsort-船舶目标检测+目标跟踪+单目测距+速度测量
从懒虫到爬虫
YOLO目标检测目标跟踪
目标跟踪是一种计算机视觉技术,通过分析图像或视频数据中的目标,实时追踪目标的位置和运动轨迹。在本文中,我们将详细介绍目标跟踪的原理、方法和应用,并探讨其在各个领域中的潜在价值。1.目标跟踪技术的基本原理目标跟踪技术的基本原理是通过提取目标特征,通过计算机算法实现目标在图像或视频序列中的连续追踪。目标特征可以包括颜色、纹理、形状等方面的信息。基于特征的跟踪方法通常包括卡尔曼滤波器、粒子滤波器等。此外
- Python卡尔曼滤波器OpenCV跟踪和预测物体的轨迹
亚图跨际
Python算法pythonopencv卡尔曼滤波OpenCVMatplotlibnumpy视频流对象
模拟简单物体二维运动和预测位置预测数学式想象一下你正坐在一辆汽车里,在雾中行驶。你几乎看不到路,但你有一个GPS系统可以告诉你你的速度和位置。问题是,这个GPS并不完美;它有时会产生噪音或不准确的读数。您如何知道您的实际位置以及行驶速度?卡尔曼滤波器提供了答案。它结合了:系统(您的汽车)根据其模型预测什么(称为预测步骤)。它接收到的噪声测量结果(在这个类比中是GPS读数)产生的估计值在统计上比预测
- 【经典教程翻译】卡尔曼与贝叶斯滤波器:直觉理解滤波器背后的原理(下:滤波器的思考框架)
MyEncyclopedia
本期继续大神RogerLabbe的KalmanandBayesianFiltersinPython。上一期【经典教程翻译】卡尔曼与贝叶斯滤波器:直觉理解滤波器背后的原理(上),这一期介绍滤波器的一些概念,引出广义卡尔曼滤波器g-h滤波器的思考方式,并且通过可以实验的例子来建立g和h因子的作用。所有文章首发于MyEncyclopedia公众号,文章链接为【经典教程翻译】卡尔曼与贝叶斯滤波器:直觉理解
- 【学习】卡尔曼滤波
联系丝信
【阅读和学习代码】学习
【精|有代码】卡尔曼滤波器的直观介绍和手写代码!卡尔曼滤波器的直观介绍(第1部分):https://www.youtube.com/watch?v=5Y-dnt2tNKY【手写代码一步步展示!精!强推!】CodingKalmanFilterinPython+NumPy(Part2):https://www.youtube.com/watch?v=W0gai93yhsM&t=1s代码github:h
- 90基于matlab的无迹卡尔曼滤波器参数估计的非线性最小二乘优化
顶呱呱程序
matlab工程应用matlab人工智能算法非线性最小二乘优化无迹卡尔曼滤波器参数估计
基于matlab的无迹卡尔曼滤波器参数估计的非线性最小二乘优化,数据可更换自己的,程序已调通,可直接运行。90matlab无迹卡尔曼滤波器参数估计(xiaohongshu.com)
- 卡尔曼滤波之大杂烩
刘诺夫斯基
算法
扩展卡尔曼滤波代码和数据卡尔曼滤波数据融合算法卡尔曼滤波器(Kalmanfiltering)扩展卡尔曼滤波EKF与多传感器融合卡尔曼算法笔记---思想和实际应用物理含义的理解KF、EKF、UKF在传感器融合当中的应用卡尔曼滤波的理解以及参数调整无人驾驶技术——无损卡尔曼滤波(UKF)常见滤波汇总(KF、EKF、UKF和PF)终于明白协方差的意义了协方差矩阵的理解卡尔曼滤波kalman滤波理解三:协
- px4: Ecl ekf2学习记录
云端舞步
PX4多传感器融合定位人工智能无人机计算机视觉学习
本文记录px4:Eclekf2的学习过程。预备知识:标准KF系统:ekf系统:预测:更新:对于ekf,新增的任务就是计算状态转换矩阵F,控制输入矩阵G和测量矩阵H的Jacobian矩阵。px4状态估计(ECL)使用扩展卡尔曼滤波器(EKF)算法来进行多传感器融合状态估计。Ecl利用IMU作状态预测,其它传感器作为观测更新。Eclekf2:定义24状态向量:四元数定义从北,东,地(NED)局部地球坐
- px4+vins+ego单机鲁棒飞行二(外部位姿估计篇)
Nankel Li
路径规划深度学习计算机视觉自动驾驶
px4+vins+ego单机鲁棒飞行二(外部位姿估计篇)一、使用px4的EKF2(扩展卡尔曼)估计测试过程及结果:二、使用px4的LPE估计测试过程及结果:三、用EKF2还是LPE?官网这么解释的3.1EKF缺点3.2优点3.3总结四、更改源码五、2021年12月2日更新参考:px4官方WIKI一、使用px4的EKF2(扩展卡尔曼)估计EKF2使用扩展卡尔曼滤波器进行三维的姿态,位置/速度以及风的
- 揭示卡尔曼滤波器的威力
无水先生
卡尔曼滤波人工智能人工智能机器学习
一、说明作为一名数据科学家,我们偶尔会遇到需要对趋势进行建模以预测未来值的情况。虽然人们倾向于关注基于统计或机器学习的算法,但我在这里提出一个不同的选择:卡尔曼滤波器(KF)。1960年代初期,RudolfE.Kalman彻底改变了使用KF建模复杂系统的方式。从引导飞机或航天器到达目的地,到让您的智能手机找到它在这个世界上的位置,该算法融合了数据和数学,以令人难以置信的准确性提供对未来状态的估计。
- 卡尔曼滤波器
还有你Y
机器学习深度学习强化学习机器学习算法人工智能
目录标题一、递归形式二、数据融合三、公式推导四、误差协方差矩阵卡尔曼滤波示例五、扩展卡尔曼滤波一、递归形式将上述1/k1/k1/k记做一个参数KkK_kKk,估计误差(当前模型决定)远大于测量误差(自身测量系统)时,即说明估计不可信,当前估计值由测量值决定;估计误差远小于测量误差时,及说明模型的精度已经很好了,当前的估计值主要依赖与估计值,而不是测量值。算法过程:二、数据融合z1、z2表示两个秤的
- 卡尔曼滤波器的推导
听海边涛声
算法
参考资源【卡尔曼滤波器】1_递归算法_RecursiveProcessing_哔哩哔哩_bilibili【卡尔曼滤波器】2_数学基础_数据融合_协方差矩阵_状态空间方程_观测器问题_哔哩哔哩_bilibili【卡尔曼滤波器】3_卡尔曼增益超详细数学推导~全网最完整_哔哩哔哩_bilibili【卡尔曼滤波器】4_误差协方差矩阵数学推导_卡尔曼滤波器的五个公式_哔哩哔哩_bilibili【卡尔曼滤波器
- Java 并发包之线程池和原子计数
lijingyao8206
Java计数ThreadPool并发包java线程池
对于大数据量关联的业务处理逻辑,比较直接的想法就是用JDK提供的并发包去解决多线程情况下的业务数据处理。线程池可以提供很好的管理线程的方式,并且可以提高线程利用率,并发包中的原子计数在多线程的情况下可以让我们避免去写一些同步代码。
这里就先把jdk并发包中的线程池处理器ThreadPoolExecutor 以原子计数类AomicInteger 和倒数计时锁C
- java编程思想 抽象类和接口
百合不是茶
java抽象类接口
接口c++对接口和内部类只有简介的支持,但在java中有队这些类的直接支持
1 ,抽象类 : 如果一个类包含一个或多个抽象方法,该类必须限定为抽象类(否者编译器报错)
抽象方法 : 在方法中仅有声明而没有方法体
package com.wj.Interface;
- [房地产与大数据]房地产数据挖掘系统
comsci
数据挖掘
随着一个关键核心技术的突破,我们已经是独立自主的开发某些先进模块,但是要完全实现,还需要一定的时间...
所以,除了代码工作以外,我们还需要关心一下非技术领域的事件..比如说房地产
&nb
- 数组队列总结
沐刃青蛟
数组队列
数组队列是一种大小可以改变,类型没有定死的类似数组的工具。不过与数组相比,它更具有灵活性。因为它不但不用担心越界问题,而且因为泛型(类似c++中模板的东西)的存在而支持各种类型。
以下是数组队列的功能实现代码:
import List.Student;
public class
- Oracle存储过程无法编译的解决方法
IT独行者
oracle存储过程
今天同事修改Oracle存储过程又导致2个过程无法被编译,流程规范上的东西,Dave 这里不多说,看看怎么解决问题。
1. 查看无效对象
XEZF@xezf(qs-xezf-db1)> select object_name,object_type,status from all_objects where status='IN
- 重装系统之后oracle恢复
文强chu
oracle
前几天正在使用电脑,没有暂停oracle的各种服务。
突然win8.1系统奔溃,无法修复,开机时系统 提示正在搜集错误信息,然后再开机,再提示的无限循环中。
无耐我拿出系统u盘 准备重装系统,没想到竟然无法从u盘引导成功。
晚上到外面早了一家修电脑店,让人家给装了个系统,并且那哥们在我没反应过来的时候,
直接把我的c盘给格式化了 并且清理了注册表,再装系统。
然后的结果就是我的oracl
- python学习二( 一些基础语法)
小桔子
pthon基础语法
紧接着把!昨天没看继续看django 官方教程,学了下python的基本语法 与c类语言还是有些小差别:
1.ptyhon的源文件以UTF-8编码格式
2.
/ 除 结果浮点型
// 除 结果整形
% 除 取余数
* 乘
** 乘方 eg 5**2 结果是5的2次方25
_&
- svn 常用命令
aichenglong
SVN版本回退
1 svn回退版本
1)在window中选择log,根据想要回退的内容,选择revert this version或revert chanages from this version
两者的区别:
revert this version:表示回退到当前版本(该版本后的版本全部作废)
revert chanages from this versio
- 某小公司面试归来
alafqq
面试
先填单子,还要写笔试题,我以时间为急,拒绝了它。。时间宝贵。
老拿这些对付毕业生的东东来吓唬我。。
面试官很刁难,问了几个问题,记录下;
1,包的范围。。。public,private,protect. --悲剧了
2,hashcode方法和equals方法的区别。谁覆盖谁.结果,他说我说反了。
3,最恶心的一道题,抽象类继承抽象类吗?(察,一般它都是被继承的啊)
4,stru
- 动态数组的存储速度比较 集合框架
百合不是茶
集合框架
集合框架:
自定义数据结构(增删改查等)
package 数组;
/**
* 创建动态数组
* @author 百合
*
*/
public class ArrayDemo{
//定义一个数组来存放数据
String[] src = new String[0];
/**
* 增加元素加入容器
* @param s要加入容器
- 用JS实现一个JS对象,对象里有两个属性一个方法
bijian1013
js对象
<html>
<head>
</head>
<body>
用js代码实现一个js对象,对象里有两个属性,一个方法
</body>
<script>
var obj={a:'1234567',b:'bbbbbbbbbb',c:function(x){
- 探索JUnit4扩展:使用Rule
bijian1013
java单元测试JUnitRule
在上一篇文章中,讨论了使用Runner扩展JUnit4的方式,即直接修改Test Runner的实现(BlockJUnit4ClassRunner)。但这种方法显然不便于灵活地添加或删除扩展功能。下面将使用JUnit4.7才开始引入的扩展方式——Rule来实现相同的扩展功能。
1. Rule
&n
- [Gson一]非泛型POJO对象的反序列化
bit1129
POJO
当要将JSON数据串反序列化自身为非泛型的POJO时,使用Gson.fromJson(String, Class)方法。自身为非泛型的POJO的包括两种:
1. POJO对象不包含任何泛型的字段
2. POJO对象包含泛型字段,例如泛型集合或者泛型类
Data类 a.不是泛型类, b.Data中的集合List和Map都是泛型的 c.Data中不包含其它的POJO
 
- 【Kakfa五】Kafka Producer和Consumer基本使用
bit1129
kafka
0.Kafka服务器的配置
一个Broker,
一个Topic
Topic中只有一个Partition() 1. Producer:
package kafka.examples.producers;
import kafka.producer.KeyedMessage;
import kafka.javaapi.producer.Producer;
impor
- lsyncd实时同步搭建指南——取代rsync+inotify
ronin47
1. 几大实时同步工具比较 1.1 inotify + rsync
最近一直在寻求生产服务服务器上的同步替代方案,原先使用的是 inotify + rsync,但随着文件数量的增大到100W+,目录下的文件列表就达20M,在网络状况不佳或者限速的情况下,变更的文件可能10来个才几M,却因此要发送的文件列表就达20M,严重减低的带宽的使用效率以及同步效率;更为要紧的是,加入inotify
- java-9. 判断整数序列是不是二元查找树的后序遍历结果
bylijinnan
java
public class IsBinTreePostTraverse{
static boolean isBSTPostOrder(int[] a){
if(a==null){
return false;
}
/*1.只有一个结点时,肯定是查找树
*2.只有两个结点时,肯定是查找树。例如{5,6}对应的BST是 6 {6,5}对应的BST是
- MySQL的sum函数返回的类型
bylijinnan
javaspringsqlmysqljdbc
今天项目切换数据库时,出错
访问数据库的代码大概是这样:
String sql = "select sum(number) as sumNumberOfOneDay from tableName";
List<Map> rows = getJdbcTemplate().queryForList(sql);
for (Map row : rows
- java设计模式之单例模式
chicony
java设计模式
在阎宏博士的《JAVA与模式》一书中开头是这样描述单例模式的:
作为对象的创建模式,单例模式确保某一个类只有一个实例,而且自行实例化并向整个系统提供这个实例。这个类称为单例类。 单例模式的结构
单例模式的特点:
单例类只能有一个实例。
单例类必须自己创建自己的唯一实例。
单例类必须给所有其他对象提供这一实例。
饿汉式单例类
publ
- javascript取当月最后一天
ctrain
JavaScript
<!--javascript取当月最后一天-->
<script language=javascript>
var current = new Date();
var year = current.getYear();
var month = current.getMonth();
showMonthLastDay(year, mont
- linux tune2fs命令详解
daizj
linuxtune2fs查看系统文件块信息
一.简介:
tune2fs是调整和查看ext2/ext3文件系统的文件系统参数,Windows下面如果出现意外断电死机情况,下次开机一般都会出现系统自检。Linux系统下面也有文件系统自检,而且是可以通过tune2fs命令,自行定义自检周期及方式。
二.用法:
Usage: tune2fs [-c max_mounts_count] [-e errors_behavior] [-g grou
- 做有中国特色的程序员
dcj3sjt126com
程序员
从出版业说起 网络作品排到靠前的,都不会太难看,一般人不爱看某部作品也是因为不喜欢这个类型,而此人也不会全不喜欢这些网络作品。究其原因,是因为网络作品都是让人先白看的,看的好了才出了头。而纸质作品就不一定了,排行榜靠前的,有好作品,也有垃圾。 许多大牛都是写了博客,后来出了书。这些书也都不次,可能有人让为不好,是因为技术书不像小说,小说在读故事,技术书是在学知识或温习知识,有
- Android:TextView属性大全
dcj3sjt126com
textview
android:autoLink 设置是否当文本为URL链接/email/电话号码/map时,文本显示为可点击的链接。可选值(none/web/email/phone/map/all) android:autoText 如果设置,将自动执行输入值的拼写纠正。此处无效果,在显示输入法并输
- tomcat虚拟目录安装及其配置
eksliang
tomcat配置说明tomca部署web应用tomcat虚拟目录安装
转载请出自出处:http://eksliang.iteye.com/blog/2097184
1.-------------------------------------------tomcat 目录结构
config:存放tomcat的配置文件
temp :存放tomcat跑起来后存放临时文件用的
work : 当第一次访问应用中的jsp
- 浅谈:APP有哪些常被黑客利用的安全漏洞
gg163
APP
首先,说到APP的安全漏洞,身为程序猿的大家应该不陌生;如果抛开安卓自身开源的问题的话,其主要产生的原因就是开发过程中疏忽或者代码不严谨引起的。但这些责任也不能怪在程序猿头上,有时会因为BOSS时间催得紧等很多可观原因。由国内移动应用安全检测团队爱内测(ineice.com)的CTO给我们浅谈关于Android 系统的开源设计以及生态环境。
1. 应用反编译漏洞:APK 包非常容易被反编译成可读
- C#根据网址生成静态页面
hvt
Web.netC#asp.nethovertree
HoverTree开源项目中HoverTreeWeb.HVTPanel的Index.aspx文件是后台管理的首页。包含生成留言板首页,以及显示用户名,退出等功能。根据网址生成页面的方法:
bool CreateHtmlFile(string url, string path)
{
//http://keleyi.com/a/bjae/3d10wfax.htm
stri
- SVG 教程 (一)
天梯梦
svg
SVG 简介
SVG 是使用 XML 来描述二维图形和绘图程序的语言。 学习之前应具备的基础知识:
继续学习之前,你应该对以下内容有基本的了解:
HTML
XML 基础
如果希望首先学习这些内容,请在本站的首页选择相应的教程。 什么是SVG?
SVG 指可伸缩矢量图形 (Scalable Vector Graphics)
SVG 用来定义用于网络的基于矢量
- 一个简单的java栈
luyulong
java数据结构栈
public class MyStack {
private long[] arr;
private int top;
public MyStack() {
arr = new long[10];
top = -1;
}
public MyStack(int maxsize) {
arr = new long[maxsize];
top
- 基础数据结构和算法八:Binary search
sunwinner
AlgorithmBinary search
Binary search needs an ordered array so that it can use array indexing to dramatically reduce the number of compares required for each search, using the classic and venerable binary search algori
- 12个C语言面试题,涉及指针、进程、运算、结构体、函数、内存,看看你能做出几个!
刘星宇
c面试
12个C语言面试题,涉及指针、进程、运算、结构体、函数、内存,看看你能做出几个!
1.gets()函数
问:请找出下面代码里的问题:
#include<stdio.h>
int main(void)
{
char buff[10];
memset(buff,0,sizeof(buff));
- ITeye 7月技术图书有奖试读获奖名单公布
ITeye管理员
活动ITeye试读
ITeye携手人民邮电出版社图灵教育共同举办的7月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
7月试读活动回顾:
http://webmaster.iteye.com/blog/2092746
本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《Java性能优化权威指南》