TensorFlow实战13:实现策略网络(强化学习一)

1.策略网络简介

所谓的策略网络,即建立一个神经网络模型,它可以通过观察环境状态,直接预测出目前最应该执行的策略(policy),执行这个策略可以获得最大的期望收益(包括现在的和未来的reward)。和之前的任务不同,在强化学习中可能没有绝对正确的学习目标,样本的feature和label也不在一一对应。我们的学习目标是期望价值,即当前获得的reward和未来潜在的可获取的reward。所以在策略网络中不只是使用当前的reward作为label,而是使用Discounted Future Reward,即把所有未来奖励一次乘以衰减系数γ。这里的衰减系数是一个略小于但接近1的数,防止没有损耗地积累导致Reward目标发散,同时也代表了对未来奖励的不确定性的估计。

2.Gym

Gym是OpenAI推出的开源的强化学习的环境生成工具。在Gym中有两个核心的概念,一个是Environment,指我们的任务或者问题,另一个就是Agent,即我们编写的策略或者算法。Agent会将执行的Action传给Environment,Environment接受某个Action后,再将结果Observation(即环境状态)和Reward返回给Agent。

安装Gym

sudo pip install gym

这里说几个问题:如果装的是python3版本的话使用pip3,否则装的是python2版本的。
还有一个经常出现的一个问题就是Error: could not create ‘some path’: Permisssion denied。出现这个问题主要的原因就是没有加sudo,其实安装软件会经常碰到Permission denied,就是权限不够,在一般情况下安装软件的话还是习惯性加个sudo,实在需要改权限再用chmod就行了。

3.CartPole的代码实现

#coding:utf-8
import numpy as np
import cPickle as pickle
import tensorflow as tf
#%matplotlib inline
import matplotlib.pyplot as plt
import math

import gym
env = gym.make('CartPole-v0')

env.reset()
random_episodes = 0
reward_sum = 0
while random_episodes < 10:
    env.render()
    observation, reward, done, _ = env.step(np.random.randint(0,2))
    reward_sum += reward
    if done:
        random_episodes += 1
        print "Reward for this episode was:",reward_sum
        reward_sum = 0
        env.reset()


# 超参数
H = 50 # number of hidden layer neurons
batch_size = 25 # every how many episodes to do a param update?
learning_rate = 1e-1 # feel free to play with this to train faster or more stably.
gamma = 0.99 # discount factor for reward

D = 4 # input dimensionality

tf.reset_default_graph()

# 神经网络的输入环境的状态,并且输出左/右的概率

observations = tf.placeholder(tf.float32, [None,D] , name="input_x")
W1 = tf.get_variable("W1", shape=[D, H],
           initializer=tf.contrib.layers.xavier_initializer())
layer1 = tf.nn.relu(tf.matmul(observations,W1))
W2 = tf.get_variable("W2", shape=[H, 1],
           initializer=tf.contrib.layers.xavier_initializer())
score = tf.matmul(layer1,W2)
probability = tf.nn.sigmoid(score)

# 定义其他部分

tvars = tf.trainable_variables()
input_y = tf.placeholder(tf.float32,[None,1], name="input_y")
advantages = tf.placeholder(tf.float32,name="reward_signal")

# 定义损失函数
loglik = tf.log(input_y*(input_y - probability) + (1 - input_y)*(input_y + probability))
loss = -tf.reduce_mean(loglik * advantages) 
newGrads = tf.gradients(loss,tvars)

# 为了减少奖励函数中的噪声,我们累积一系列的梯度之后才会更新神经网络的参数

adam = tf.train.AdamOptimizer(learning_rate=learning_rate) # Our optimizer
W1Grad = tf.placeholder(tf.float32,name="batch_grad1") # Placeholders to send the final gradients through when we update.
W2Grad = tf.placeholder(tf.float32,name="batch_grad2")
batchGrad = [W1Grad,W2Grad]
updateGrads = adam.apply_gradients(zip(batchGrad,tvars))

def discount_rewards(r):
    """ take 1D float array of rewards and compute discounted reward """
    discounted_r = np.zeros_like(r)
    running_add = 0
    for t in reversed(xrange(0, r.size)):
        running_add = running_add * gamma + r[t]
        discounted_r[t] = running_add
    return discounted_r


xs,hs,dlogps,drs,ys,tfps = [],[],[],[],[],[]
running_reward = None
reward_sum = 0
episode_number = 1
total_episodes = 10000
init = tf.initialize_all_variables()

# Launch the graph
with tf.Session() as sess:
    rendering = False
    sess.run(init)
    observation = env.reset() # Obtain an initial observation of the environment

    # Reset the gradient placeholder. We will collect gradients in 
    # gradBuffer until we are ready to update our policy network. 
    gradBuffer = sess.run(tvars)
    for ix,grad in enumerate(gradBuffer):
        gradBuffer[ix] = grad * 0

    while episode_number <= total_episodes:

        # Rendering the environment slows things down, 
        # so let's only look at it once our agent is doing a good job.
        if reward_sum/batch_size > 100 or rendering == True : 
            env.render()
            rendering = True

        # Make sure the observation is in a shape the network can handle.
        x = np.reshape(observation,[1,D])

        # Run the policy network and get an action to take. 
        tfprob = sess.run(probability,feed_dict={observations: x})
        action = 1 if np.random.uniform() < tfprob else 0

        xs.append(x) # observation
        y = 1 if action == 0 else 0 # a "fake label"
        ys.append(y)

        # step the environment and get new measurements
        observation, reward, done, info = env.step(action)
        reward_sum += reward

        drs.append(reward) # record reward (has to be done after we call step() to get reward for previous action)

        # 批量更新
        if done: 
            episode_number += 1
            # stack together all inputs, hidden states, action gradients, and rewards for this episode
            epx = np.vstack(xs)
            epy = np.vstack(ys)
            epr = np.vstack(drs)
            tfp = tfps
            xs,hs,dlogps,drs,ys,tfps = [],[],[],[],[],[] # reset array memory

            # compute the discounted reward backwards through time
            discounted_epr = discount_rewards(epr)
            # size the rewards to be unit normal (helps control the gradient estimator variance)
            discounted_epr -= np.mean(discounted_epr)
            discounted_epr /= np.std(discounted_epr)

            # Get the gradient for this episode, and save it in the gradBuffer
            tGrad = sess.run(newGrads,feed_dict={observations: epx, input_y: epy, advantages: discounted_epr})
            for ix,grad in enumerate(tGrad):
                gradBuffer[ix] += grad

            # If we have completed enough episodes, then update the policy network with our gradients.
            if episode_number % batch_size == 0: 
                sess.run(updateGrads,feed_dict={W1Grad: gradBuffer[0],W2Grad:gradBuffer[1]})
                for ix,grad in enumerate(gradBuffer):
                    gradBuffer[ix] = grad * 0

                # Give a summary of how well our network is doing for each batch of episodes.
                running_reward = reward_sum if running_reward is None else running_reward * 0.99 + reward_sum * 0.01
                print 'Average reward for episode %f. Total average reward %f.' % (reward_sum/batch_size, running_reward/batch_size)

                if reward_sum/batch_size >= 200: 
                    print "Task solved in",episode_number,'episodes!'
                    break

                reward_sum = 0

            observation = env.reset()

print episode_number,'Episodes completed.'

这里我注释掉了一行代码%matplotlib inline,这行代码是魔法命令。如果直接在终端里运行会报错UsageError: Invalid GUI request ‘inline’, valid ones are [‘qt4’, ‘glut’, ……(主要都是一些编译器)]。报错是因为没有合适的GUI,魔法命令是要在ipython中使用的。上面语句的作用是在Ipython中显示图片内嵌在notebook中,这样可以直接在程序运行结束后显示图片。O(∩_∩)O

你可能感兴趣的:(神经网络,强化学习)