- PP-PLL:基于概率传播的部分标签学习
阳光明媚大男孩
PLL学习机器学习人工智能部分标签学习深度学习
以下是对论文《PP-PLL:ProbabilityPropagationforPartialLabelLearning》的总结,按照假设、创新点、技术路线、技术实现细节、具体的数学公式、实验结果分析和结论的结构进行。假设流形假设:论文假设特征空间中的样本遵循流形结构,即相邻样本的标签分布相似。这一假设认为,样本在特征空间中的拓扑关系可以用来推断其标签分布。候选标签的互斥性:每个样本的真实标签隐藏在
- 企业估值中的行业周期影响
AI智能涌现深度研究
DeepSeekai
企业估值中的行业周期影响关键词:企业估值、行业周期、经济波动、估值模型、行业特征摘要:本文深入探讨了企业估值过程中行业周期所产生的影响。首先介绍了相关背景知识,包括目的范围、预期读者等内容。接着阐述了企业估值和行业周期的核心概念及二者联系,给出了相应的文本示意图和Mermaid流程图。详细讲解了核心算法原理与具体操作步骤,并结合Python代码进行说明。还分析了涉及的数学模型和公式,通过举例加深理
- 加权递推平均滤波法
CircuitWizard
单片机算法算法
加权递推平均滤波法可以有效抑制噪声并提高数据稳定性。以下是分步实现的详细说明:1.滤波原理加权递推平均滤波法通过为不同时刻的数据分配不同的权重,使新数据对结果影响更大,旧数据影响逐渐减小。公式如下:(Yn):滤波后输出(Xn-i):第(n-i)次采样值(Wi):权重系数(通常按时间递减)2.STM32实现步骤2.1配置ADC与DMA//示例:STM32CubeMX配置ADC_HandleTypeD
- AI在个性化广告创意生成中的应用
杭州大厂Java程序媛
DeepSeekR1&AI人工智能与大数据人工智能ai
AI在个性化广告创意生成中的应用关键词:AI、个性化广告创意生成、用户画像、深度学习、自然语言处理、计算机视觉摘要:本文深入探讨了AI在个性化广告创意生成中的应用。首先介绍了相关背景,包括目的范围、预期读者等内容。接着阐述了核心概念及联系,详细讲解了核心算法原理与操作步骤,并通过数学模型和公式进行理论支持。通过项目实战展示了代码实现与分析,探讨了实际应用场景。还推荐了学习工具和资源,最后总结了未来
- 大规模语言模型在自动软件需求分析与验证中的应用
杭州大厂Java程序媛
DeepSeekR1&AI人工智能与大数据语言模型需求分析人工智能ai
大规模语言模型在自动软件需求分析与验证中的应用关键词:大规模语言模型、软件需求分析、需求验证、自然语言处理、软件工程摘要:本文深入探讨了大规模语言模型在自动软件需求分析与验证中的应用。首先介绍了相关背景,包括研究目的、预期读者和文档结构等。接着阐述了核心概念,给出了原理和架构的示意图与流程图。详细讲解了核心算法原理,用Python代码进行了示例。分析了数学模型和公式,并举例说明。通过项目实战展示了
- 第三十三篇 事实表深度设计原理:从数学基础到工业级实现的完整框架
随缘而动,随遇而安
数据仓库大数据数据分析数据库开发数据库架构
目录一、数学原理深度解析1.1四元组模型详解1.2关系代数公式拆解1.3可加性类型辨析二、工业级设计规范2.1粒度控制矩阵详解2.2范式理论实践三、高级工程实践3.1SCD类型4实现详解3.2分布式存储设计四、金融级案例剖析4.1证券交易表CHECK约束解析4.2数据质量多维验证五、性能优化全方案5.1列式存储编码策略5.2混合存储实战配置六、经典问题解决方案问题:高基数维度导致查询性能下降一、数
- 【RRF】递归排序融合 1 / (k + i) 核心思想
星星点点洲
RAG搜索引擎
ReciprocalRankFusion(RRF)是一种用于合并多个排名列表的算法,其核心公式是1/(k+i),其中:k是一个常数,用于控制权重的衰减速度。i是文档在当前排名列表中的位置(索引,从0开始)。这个公式的设计有其深刻的数学和逻辑背景,下面详细解释为什么要这样计算。1.RRF的核心思想RRF的目标是将多个排名列表合并为一个统一的排名,同时尽可能保留每个列表中的重要信息。为了实现这一目标,
- 机器人的位姿变换左乘与右乘
EngineerSuTao
机器人算法人工智能
对于机器人位姿变换,将变化量(变换矩阵)乘在当前位姿的左边和右边并不是完全一样的,它们的物理意义不同。具体效果取决于你要实现的操作——是相对于全局坐标系变换,还是相对于局部坐标系变换。左乘与右乘的区别1.右乘(LocalTransformation,局部变换)右乘表示在当前坐标系下应用变化量。即变化量是在当前位姿(局部坐标系)中定义的。公式表示:Tnew=Tcurrent⋅ΔTT_{\text{n
- 单目估算测距
EngineerSuTao
算法目标检测
使用单目相机估算标志物到相机的距离,可以利用透视投影原理和相似三角形关系。具体方法如下:方法1:利用已知尺寸和成像尺寸公式D=W×fwD=\frac{W\timesf}{w}D=wW×f其中:DDD:标志物到相机的距离(单位与WW和ff保持一致)WWW:标志物的实际宽度(或高度)fff:相机的焦距(单位与WW一致)www:标志物在图像中的宽度(或高度,单位为像素)步骤标定相机:获取相机的焦距fff
- typora+pandoc:markdown文本转换成word(也可把word转换成markdown哦)
云南省高校数据化运营管理工程研究中心
吴玲pandocmarkdownwordwindows
因为想把自己写的博客转换成word,博客是markdown格式,公式什么的又懒得在word里面敲第二遍。于是就找了个方法让.md文本与.doc文本转换。反之也可把word转换成markdown哦。教程附后。markdown文本转换成word步骤如下1首先,下载typora,一路安装即可。网址为:http://www.softpedia.com/get/Internet/WEB-Design/HTM
- Leetcode 3495. Minimum Operations to Make Array Elements Zero
Espresso Macchiato
leetcode笔记leetcode3495leetcodehardleetcode周赛442动态规划迭代算法阶数运算
Leetcode3495.MinimumOperationstoMakeArrayElementsZero1.解题思路2.代码实现题目链接:3495.MinimumOperationstoMakeArrayElementsZero1.解题思路这一题的话核心就是统计对任意自然数nnn,从111到nnn当中所有的数字对于444的阶数之和,用数学公式表达就是:f(n)=∑i=1n⌈log4(i)⌉f(n
- C语言pta程序设计---实验七(函数)
.又是新的一天.
大学课程汇总专栏算法c++c语言
6-1sdut-C语言实验-计算组合数分数10作者马新娟单位山东理工大学计算组合数。C(n,m),表示从n个数中选择m个的组合数。计算公式如下:若:m=0,C(n,m)=1否则,若n=1,C(n,m)=1否则,若m=n,C(n,m)=1否则C(n,m)=C(n-1,m-1)+C(n-1,m).函数接口定义:在这里描述函数接口。例如:intfun(intn,intm);其中n和m都是用户传入的参数(
- Momentum优化器的超参数调优方法
AI天才研究院
计算DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Momentum优化器的超参数调优方法1.背景介绍在深度学习领域,优化器是训练神经网络的关键组件之一。优化器的选择和调优直接影响模型的收敛速度和最终性能。Momentum优化器是一种常用的优化算法,它通过引入动量的概念来加速梯度下降过程,特别是在处理高维数据和复杂模型时表现尤为出色。然而,Momentum优化器的性能高度依赖于其超参数的设置。本文将深入探讨Momentum优化器的超参数调优方法,帮
- bat文件建文件夹时乱码及失败问题
Water_Sounds
学习笔记excel
乱码问题:.txt文件保存时不要直接ctrl+s,要用“另存为”,把UTF8改成ANSI。失败问题:md与文件名之间要有空格,excel批量处理时,公式是:=“md”&A2(注意d后面的空格)
- Java设计模式之解释器模式
飞翔中文网
java设计模式
概念解释器模式是一种行为型设计模式,用于定义一种语言的语法规则,并提供解释器来解释该语言中的表达式。作用其核心作用是将复杂的语法分解为简单的语法单元,通过递归组合的方式构建抽象语法树(AST),最终由解释器逐层解释执行。场景1.需要解释特定领域的语言:如数学公式、正则表达式、SQL查询等。2.语法相对简单且稳定:若语法频繁变化或过于复杂,建议使用解析器生成工具(如ANTLR)。3.需要灵活扩展语法
- 基于WebAssembly的浏览器密码套件
闲人编程
wasm服务器易于集成跨平台性密码套件浏览器WebAssembly
目录一、前言二、WebAssembly与浏览器密码套件2.1WebAssembly技术概述2.2浏览器密码套件的需求三、系统设计思路与架构3.1核心模块3.2系统整体架构图四、核心数学公式与算法证明4.1AES-GCM加解密公式4.2SHA-256哈希函数五、异步任务调度与GPU加速设计5.1异步任务调度5.2GPU加速六、GUI设计与功能模块七、完整代码实现九、代码自查与总结十、总结与展望一、前
- 【C语言初学】C语言中表示次方与开根
JAMJAM_NoName
Cc语言开发语言后端
开根:doublesqrt(doublex)(对x开根)次方:doublepow(doublex,doubley)(计算x^y)上述两个函数都属于math库中使用前要将预处理命令#include包含进源文件中两个例题:1.输入三角形的三边长,求三角形的面积已知三条边长a,b,c三角形面积公式:#include#includeintmain(){doublea,b,c;scanf("%lf%lf%l
- 2024年第五届MathorCup数学应用挑战赛--大数据竞赛思路、代码更新中.....
宇哥预测优化代码学习
1024程序员节
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录⛳️研赛及概况一、竞赛背景与目的二、组织机构与参赛对象三、竞赛时间与流程四、竞赛要求与规则五、奖项设置与奖励六、研究文档撰写建议七、参考资料与资源1找程序网站推荐2公式编辑器、流程图、论文排版324年研赛资源下载4思路、Python、Matlab代码分享......⛳
- 洛谷 P3228 [HNOI2013] 数列
syzyc
数论题解组合数取模数论
题目传送门前言这道题最难的其实是想到把【构造一个上升序列】转化为【构造一个差分序列】(当然我是想不到的,所以看了题解的一部分)。了解此思路下的我经过一顿推公式之后依旧只推出了30pts的暴力公式和代码,然后看了题解豁然开朗,所以决定写一篇题解来说说暴力和正解的思路。整体思路正如前言所说,我们把每一天股票增长的差分数组did_idi设出来,did_idi的取值范围是[1,m][1,m][1,m]。假
- python爱心代码高级
youyouxiong
python开发语言
在Python中,我们可以使用各种方法来绘制一个“爱心”形状。以下是一个使用turtle模块绘制爱心的高级示例。这个示例将使用更复杂的数学公式和图形操作来绘制一个更精致的爱心形状。importturtleimportmath#设置初始状态window=turtle.Screen()window.bgcolor("black")#设置背景色为黑色love=turtle.Turtle()love.sp
- python实现绘制爱心函数(绘制过程)
halo0416
python开发语言
首先,确保已经安装了matplotlib库和numpy库。如果没有安装,可以通过pip来安装:pipinstallmatplotlibpipinstallnumpy了解心形函数公式:x(t)=y(t)=13cos(t)−5cos(2t)−2cos(3t)−cos(4t)定义函数:defheart_shape(t):x=16*np.sin(t)**3y=13*np.cos(t)-5*np.c
- 使用 Python 绘制爱心图形(高级版)
徐浪老师
徐浪老师大讲堂python开发语言
以下是一段使用Python绘制高级“爱心”图案的代码,结合数学公式生成精美的爱心形状,并附加一些交互式的效果,比如渐变颜色或动态展示:动态渐变爱心importnumpyasnpimportmatplotlib.pyplotaspltimportmatplotlib.animationasanimation#设置爱心的数学公式defheart_shape(t):x=16*np.sin(t)**3y=
- 【指标对比】SMA 和 EMA区别
T-I-M
时间序列
在描述时间序列趋势(如股票价格)时,简单移动平均(SMA)和指数移动平均(EMA)各有特点。以下是详细分析:一、核心对比指标SMAEMA权重分配等权重指数衰减权重滞后性较高较低噪声敏感性较不敏感更敏感计算复杂度简单需要递归计算参数敏感性对窗口大小敏感对衰减因子敏感二、特性分析1.SMA(简单移动平均)公式:SMAt=1n∑i=0n−1Pt−iSMA_t=\frac{1}{n}\sum_{i=0}^
- 在SPSS的单因素方差分析(One-Way ANOVA)中,F值和t值是两种不同的统计量 f/t
zhangfeng1133
数据分析
在SPSS的单因素方差分析(One-WayANOVA)中,F值和t值是两种不同的统计量,用于不同的分析场景,具体含义如下:###1.**F值**F值是单因素方差分析中的统计量,用于检验多个组之间的均值是否存在显著差异。它是通过比较组间方差与组内方差的比值来计算的,具体公式为:**F值=组间方差/组内方差**-**F值的意义**:-F值越大,说明组间差异相对于组内差异越大,即不同组之间的均值差异越显
- 零基础入门机器学习:用Scikit-learn实现鸢尾花分类
藍海琴泉
机器学习scikit-learn分类
适合人群:机器学习新手|数据分析爱好者|需快速展示案例的学生一、引言:为什么要学这个案例?目的:明确机器学习解决什么问题,建立学习信心。机器学习定义:让计算机从数据中自动学习规律(如分类鸢尾花品种)。为什么选鸢尾花数据集:数据量小、特征明确,适合教学演示。Scikit-learn优势:提供现成算法和工具,无需从头写数学公式。二、环境准备:5分钟快速上手目的:搭建可运行的代码环境,避免卡在工具安装环
- Description of a Poisson Imagery Super Resolution Algorithm 论文阅读
青铜锁00
论文阅读Radar论文阅读
DescriptionofaPoissonImagerySuperResolutionAlgorithm1.研究目标与意义1.1研究目标1.2实际意义2.创新方法与模型2.1核心思路2.2关键公式与推导2.2.1贝叶斯框架与概率模型2.2.2MAP估计的优化目标2.2.3超分辨率参数α2.3对比传统方法的优势3.实验验证与结果3.1实验设计3.2关键结果4.未来研究方向(实波束雷达领域)4.1挑战
- pythontype函数使用_Python astype(np.float)函数使用方法解析
weixin_39870238
pythontype函数使用
Pythonastype(np.float)函数使用方法解析我的数据库如图结构我取了其中的nameagenr,做成array,只要所取数据存在str型,那么取出的数据,全部转化为str型,也就是array阵列的元素全是str,不管数据库定义的是不是int型。那么问题来了,取出的数据代入公式进行计算的时候,就会类型不符,这是就用到astype(np.float)代码如下importpymysqlim
- 《基于自适应正负样本对比学习的特征提取框架》-核心公式提炼简洁版 2022年neural networks
阳光明媚大男孩
学习深度学习人工智能论文笔记
论文源地址以下是从文档中提取的关于“基于对比学习的特征提取框架(CL-FEFA)”中正负样本对比学习实现的技术细节,包括详细的数学公式、特征提取过程以及特征表示方式的说明。1.正负样本的定义与构造在CL-FEFA框架中,正负样本的定义是动态且自适应的,基于特征提取的结果,而不是预先固定的。这种自适应性是CL-FEFA区别于传统对比学习(如SimCLR、SupCon)的一个关键点。定义方式:指示矩阵
- 功率(电功率)的四大计算公式
深圳市青牛科技实业有限公司 小芋圆
芯谷芯麦顶源单片机人工智能新能源嵌入式硬件光伏逆变器
电功率是衡量电能转化为其他形式能量的速率。在电力系统中,功率的计算是基础且关键的内容。以下是电功率的四大计算公式:1.功率公式(直流电)对于直流电(DC),功率(P)可以通过以下公式计算:[P=V\timesI]其中:(P)为功率(瓦特,W)(V)为电压(伏特,V)(I)为电流(安培,A)2.功率公式(交流电)对于纯阻性负载的交流电(AC),功率公式与直流电类似:[P=V\timesI]3.有效功
- 深度学习 Deep Learning 第8章 深度学习优化
odoo中国
AI编程人工智能深度学习人工智能优化
深度学习第8章深度学习的优化章节概述本章深入探讨了深度学习中的优化技术,旨在解决模型训练过程中面临的各种挑战。优化是深度学习的核心环节,直接关系到模型的训练效率和最终性能。本章首先介绍了优化在深度学习中的特殊性,然后详细讨论了多种优化算法,包括随机梯度下降(SGD)、动量法、Nesterov动量法、AdaGrad、RMSProp和Adam等。此外,还探讨了参数初始化策略、自适应学习率方法以及二阶优
- java Illegal overloaded getter method with ambiguous type for propert的解决
zwllxs
javajdk
好久不来iteye,今天又来看看,哈哈,今天碰到在编码时,反射中会抛出
Illegal overloaded getter method with ambiguous type for propert这么个东东,从字面意思看,是反射在获取getter时迷惑了,然后回想起java在boolean值在生成getter时,分别有is和getter,也许我们的反射对象中就有is开头的方法迷惑了jdk,
- IT人应当知道的10个行业小内幕
beijingjava
工作互联网
10. 虽然IT业的薪酬比其他很多行业要好,但有公司因此视你为其“佣人”。
尽管IT人士的薪水没有互联网泡沫之前要好,但和其他行业人士比较,IT人的薪资还算好点。在接下的几十年中,科技在商业和社会发展中所占分量会一直增加,所以我们完全有理由相信,IT专业人才的需求量也不会减少。
然而,正因为IT人士的薪水普遍较高,所以有些公司认为给了你这么多钱,就把你看成是公司的“佣人”,拥有你的支配
- java 实现自定义链表
CrazyMizzz
java数据结构
1.链表结构
链表是链式的结构
2.链表的组成
链表是由头节点,中间节点和尾节点组成
节点是由两个部分组成:
1.数据域
2.引用域
3.链表的实现
&nbs
- web项目发布到服务器后图片过一会儿消失
麦田的设计者
struts2上传图片永久保存
作为一名学习了android和j2ee的程序员,我们必须要意识到,客服端和服务器端的交互是很有必要的,比如你用eclipse写了一个web工程,并且发布到了服务器(tomcat)上,这时你在webapps目录下看到了你发布的web工程,你可以打开电脑的浏览器输入http://localhost:8080/工程/路径访问里面的资源。但是,有时你会突然的发现之前用struts2上传的图片
- CodeIgniter框架Cart类 name 不能设置中文的解决方法
IT独行者
CodeIgniterCart框架
今天试用了一下CodeIgniter的Cart类时遇到了个小问题,发现当name的值为中文时,就写入不了session。在这里特别提醒一下。 在CI手册里也有说明,如下:
$data = array(
'id' => 'sku_123ABC',
'qty' => 1,
'
- linux回收站
_wy_
linux回收站
今天一不小心在ubuntu下把一个文件移动到了回收站,我并不想删,手误了。我急忙到Nautilus下的回收站中准备恢复它,但是里面居然什么都没有。 后来我发现这是由于我删文件的地方不在HOME所在的分区,而是在另一个独立的Linux分区下,这是我专门用于开发的分区。而我删除的东东在分区根目录下的.Trash-1000/file目录下,相关的删除信息(删除时间和文件所在
- jquery回到页面顶端
知了ing
htmljquerycss
html代码:
<h1 id="anchor">页面标题</h1>
<div id="container">页面内容</div>
<p><a href="#anchor" class="topLink">回到顶端</a><
- B树、B-树、B+树、B*树
矮蛋蛋
B树
原文地址:
http://www.cnblogs.com/oldhorse/archive/2009/11/16/1604009.html
B树
即二叉搜索树:
1.所有非叶子结点至多拥有两个儿子(Left和Right);
&nb
- 数据库连接池
alafqq
数据库连接池
http://www.cnblogs.com/xdp-gacl/p/4002804.html
@Anthor:孤傲苍狼
数据库连接池
用MySQLv5版本的数据库驱动没有问题,使用MySQLv6和Oracle的数据库驱动时候报如下错误:
java.lang.ClassCastException: $Proxy0 cannot be cast to java.sql.Connec
- java泛型
百合不是茶
java泛型
泛型
在Java SE 1.5之前,没有泛型的情况的下,通过对类型Object的引用来实现参数的“任意化”,任意化的缺点就是要实行强制转换,这种强制转换可能会带来不安全的隐患
泛型的特点:消除强制转换 确保类型安全 向后兼容
简单泛型的定义:
泛型:就是在类中将其模糊化,在创建对象的时候再具体定义
class fan
- javascript闭包[两个小测试例子]
bijian1013
JavaScriptJavaScript
一.程序一
<script>
var name = "The Window";
var Object_a = {
name : "My Object",
getNameFunc : function(){
var that = this;
return function(){
- 探索JUnit4扩展:假设机制(Assumption)
bijian1013
javaAssumptionJUnit单元测试
一.假设机制(Assumption)概述 理想情况下,写测试用例的开发人员可以明确的知道所有导致他们所写的测试用例不通过的地方,但是有的时候,这些导致测试用例不通过的地方并不是很容易的被发现,可能隐藏得很深,从而导致开发人员在写测试用例时很难预测到这些因素,而且往往这些因素并不是开发人员当初设计测试用例时真正目的,
- 【Gson四】范型POJO的反序列化
bit1129
POJO
在下面这个例子中,POJO(Data类)是一个范型类,在Tests中,指定范型类为PieceData,POJO初始化完成后,通过
String str = new Gson().toJson(data);
得到范型化的POJO序列化得到的JSON串,然后将这个JSON串反序列化为POJO
import com.google.gson.Gson;
import java.
- 【Spark八十五】Spark Streaming分析结果落地到MySQL
bit1129
Stream
几点总结:
1. DStream.foreachRDD是一个Output Operation,类似于RDD的action,会触发Job的提交。DStream.foreachRDD是数据落地很常用的方法
2. 获取MySQL Connection的操作应该放在foreachRDD的参数(是一个RDD[T]=>Unit的函数类型),这样,当foreachRDD方法在每个Worker上执行时,
- NGINX + LUA实现复杂的控制
ronin47
nginx lua
安装lua_nginx_module 模块
lua_nginx_module 可以一步步的安装,也可以直接用淘宝的OpenResty
Centos和debian的安装就简单了。。
这里说下freebsd的安装:
fetch http://www.lua.org/ftp/lua-5.1.4.tar.gz
tar zxvf lua-5.1.4.tar.gz
cd lua-5.1.4
ma
- java-递归判断数组是否升序
bylijinnan
java
public class IsAccendListRecursive {
/*递归判断数组是否升序
* if a Integer array is ascending,return true
* use recursion
*/
public static void main(String[] args){
IsAccendListRecursiv
- Netty源码学习-DefaultChannelPipeline2
bylijinnan
javanetty
Netty3的API
http://docs.jboss.org/netty/3.2/api/org/jboss/netty/channel/ChannelPipeline.html
里面提到ChannelPipeline的一个“pitfall”:
如果ChannelPipeline只有一个handler(假设为handlerA)且希望用另一handler(假设为handlerB)
来
- Java工具之JPS
chinrui
java
JPS使用
熟悉Linux的朋友们都知道,Linux下有一个常用的命令叫做ps(Process Status),是用来查看Linux环境下进程信息的。同样的,在Java Virtual Machine里面也提供了类似的工具供广大Java开发人员使用,它就是jps(Java Process Status),它可以用来
- window.print分页打印
ctrain
window
function init() {
var tt = document.getElementById("tt");
var childNodes = tt.childNodes[0].childNodes;
var level = 0;
for (var i = 0; i < childNodes.length; i++) {
- 安装hadoop时 执行jps命令Error occurred during initialization of VM
daizj
jdkhadoopjps
在安装hadoop时,执行JPS出现下面错误
[slave16]root@192.168.11.10:/tmp/hsperfdata_hdfs# jps
Error occurred during initialization of VM
java.lang.Error: Properties init: Could not determine current working
- PHP开发大型项目的一点经验
dcj3sjt126com
PHP重构
一、变量 最好是把所有的变量存储在一个数组中,这样在程序的开发中可以带来很多的方便,特别是当程序很大的时候。变量的命名就当适合自己的习惯,不管是用拼音还是英语,至少应当有一定的意义,以便适合记忆。变量的命名尽量规范化,不要与PHP中的关键字相冲突。 二、函数 PHP自带了很多函数,这给我们程序的编写带来了很多的方便。当然,在大型程序中我们往往自己要定义许多个函数,几十
- android笔记之--向网络发送GET/POST请求参数
dcj3sjt126com
android
使用GET方法发送请求
private static boolean sendGETRequest (String path,
Map<String, String> params) throws Exception{
//发送地http://192.168.100.91:8080/videoServi
- linux复习笔记 之bash shell (3) 通配符
eksliang
linux 通配符linux通配符
转载请出自出处:
http://eksliang.iteye.com/blog/2104387
在bash的操作环境中有一个非常有用的功能,那就是通配符。
下面列出一些常用的通配符,如下表所示 符号 意义 * 万用字符,代表0个到无穷个任意字符 ? 万用字符,代表一定有一个任意字符 [] 代表一定有一个在中括号内的字符。例如:[abcd]代表一定有一个字符,可能是a、b、c
- Android关于短信加密
gqdy365
android
关于Android短信加密功能,我初步了解的如下(只在Android应用层试验):
1、因为Android有短信收发接口,可以调用接口完成短信收发;
发送过程:APP(基于短信应用修改)接受用户输入号码、内容——>APP对短信内容加密——>调用短信发送方法Sm
- asp.net在网站根目录下创建文件夹
hvt
.netC#hovertreeasp.netWeb Forms
假设要在asp.net网站的根目录下建立文件夹hovertree,C#代码如下:
string m_keleyiFolderName = Server.MapPath("/hovertree");
if (Directory.Exists(m_keleyiFolderName))
{
//文件夹已经存在
return;
}
else
{
try
{
D
- 一个合格的程序员应该读过哪些书
justjavac
程序员书籍
编者按:2008年8月4日,StackOverflow 网友 Bert F 发帖提问:哪本最具影响力的书,是每个程序员都应该读的?
“如果能时光倒流,回到过去,作为一个开发人员,你可以告诉自己在职业生涯初期应该读一本, 你会选择哪本书呢?我希望这个书单列表内容丰富,可以涵盖很多东西。”
很多程序员响应,他们在推荐时也写下自己的评语。 以前就有国内网友介绍这个程序员书单,不过都是推荐数
- 单实例实践
跑龙套_az
单例
1、内部类
public class Singleton {
private static class SingletonHolder {
public static Singleton singleton = new Singleton();
}
public Singleton getRes
- PO VO BEAN 理解
q137681467
VODTOpo
PO:
全称是 persistant object持久对象 最形象的理解就是一个PO就是数据库中的一条记录。 好处是可以把一条记录作为一个对象处理,可以方便的转为其它对象。
BO:
全称是 business object:业务对象 主要作用是把业务逻辑封装为一个对象。这个对
- 战胜惰性,暗自努力
金笛子
努力
偶然看到一句很贴近生活的话:“别人都在你看不到的地方暗自努力,在你看得到的地方,他们也和你一样显得吊儿郎当,和你一样会抱怨,而只有你自己相信这些都是真的,最后也只有你一人继续不思进取。”很多句子总在不经意中就会戳中一部分人的软肋,我想我们每个人的周围总是有那么些表现得“吊儿郎当”的存在,是否你就真的相信他们如此不思进取,而开始放松了对自己的要求随波逐流呢?
我有个朋友是搞技术的,平时嘻嘻哈哈,以
- NDK/JNI二维数组多维数组传递
wenzongliang
二维数组jniNDK
多维数组和对象数组一样处理,例如二维数组里的每个元素还是一个数组 用jArray表示,直到数组变为一维的,且里面元素为基本类型,去获得一维数组指针。给大家提供个例子。已经测试通过。
Java_cn_wzl_FiveChessView_checkWin( JNIEnv* env,jobject thiz,jobjectArray qizidata)
{
jint i,j;
int s