GNN:“图卷积模型”通用框架【每一层网络都基于邻域节点(1-hop)更新当前节点的向量表示(一般用2~3层)】【消息传递:①从邻域节点汇聚信息;②更新当前节点状态】【各模型区别:聚合函数类型的选取】
一、卷积的概念1、图卷积缘起在开始正式介绍图卷积之前,我们先花一点篇幅探讨一个问题:为什么研究者们要设计图卷积操作,传统的卷积不能直接用在图上吗?要理解这个问题,我们首先要理解能够应用传统卷积的**图像(欧式空间)与图(非欧空间)**的区别。如果把图像中的每个像素点视作一个结点,如下图左侧所示,一张图片就可以看作一个非常稠密的图;下图右侧则是一个普通的图。阴影部分代表卷积核,左侧是一个传统的卷积核