E-COM-NET
首页
在线工具
Layui镜像站
SUI文档
联系我们
推荐频道
Java
PHP
C++
C
C#
Python
Ruby
go语言
Scala
Servlet
Vue
MySQL
NoSQL
Redis
CSS
Oracle
SQL Server
DB2
HBase
Http
HTML5
Spring
Ajax
Jquery
JavaScript
Json
XML
NodeJs
mybatis
Hibernate
算法
设计模式
shell
数据结构
大数据
JS
消息中间件
正则表达式
Tomcat
SQL
Nginx
Shiro
Maven
Linux
最小二乘损失函数
[实践应用] 深度学习之优化器
博客文章总览深度学习之优化器1.随机梯度下降(SGD)2.动量优化(Momentum)3.自适应梯度(Adagrad)4.自适应矩估计(Adam)5.RMSprop总结其他介绍在深度学习中,优化器用于更新模型的参数,以最小化
损失函数
YuanDaima2048
·
2024-09-16 04:38
深度学习
工具使用
pytorch
深度学习
人工智能
机器学习
python
优化器
3.1
损失函数
和优化:
损失函数
用一个函数把W当做输入,然后看一下得分,定量地估计W的好坏,这个函数被称为“
损失函数
”。
损失函数
用于度量W的好坏。
做只小考拉
·
2024-09-16 03:17
神经网络-
损失函数
文章目录一、回归问题的
损失函数
1.均方误差(MeanSquaredError,MSE)2.平均绝对误差(MeanAbsoluteError,MAE)二、分类问题的
损失函数
1.0-1
损失函数
(Zero-OneLossFunction
红米煮粥
·
2024-09-15 22:03
神经网络
人工智能
深度学习
损失函数
与反向传播
损失函数
定义与作用
损失函数
(lossfunction)在深度学习领域是用来计算搭建模型预测的输出值和真实值之间的误差。
Star_.
·
2024-09-15 22:59
PyTorch
pytorch
深度学习
python
Python实现梯度下降法
梯度下降法的应用场景梯度下降法的基本思想梯度下降法的原理梯度的定义学习率的选择
损失函数
与优化问题梯度下降法的收敛条件Python实现梯度下降法面向对象的设计思路代码实现示例与解释梯度下降法应用实例:线性回归场景描述算法实现结果分析与可视化梯度下降法的改进版本随机梯度下降
闲人编程
·
2024-09-14 23:35
python
python
开发语言
梯度下降
算法
优化
每天五分钟玩转深度学习PyTorch:模型参数优化器torch.optim
本文重点在机器学习或者深度学习中,我们需要通过修改参数使得
损失函数
最小化(或最大化),优化算法就是一种调整模型参数更新的策略。
幻风_huanfeng
·
2024-09-14 23:32
深度学习框架pytorch
深度学习
pytorch
人工智能
神经网络
机器学习
优化算法
曲线的平滑平滑处理
在一本老版本的《数学手册》中找到了几个基于
最小二乘
法的数据平滑算法。将其写成了C代码,测试了一下,效果还可以。这里简单的记录一下,算是给自己做个笔记。算法的原理很简单,以五点三次平滑为例。
zq4132
·
2024-09-13 21:12
c++
qt
c
数据
算法
如何让大模型更聪明?
让大模型更聪明,从算法创新、数据质量与多样性、模型架构优化等角度出发,我们可以采取以下策略:一、算法创新优化
损失函数
:
损失函数
是优化算法的核心,直接影响模型的最终性能。
吗喽一只
·
2024-09-13 13:54
人工智能
算法
机器学习
惩罚线性回归模型
在惩罚线性回归中,除了最小化预测值与实际值之间的平方误差(或其他
损失函数
)外,还会考虑模型参数的大小。惩罚项通常被加到模型的
损失函数
中,以限制模型参数的大小。
媛苏苏
·
2024-09-12 01:31
算法/模型/函数
线性回归
算法
回归
数学运用 -- 使用
最小二乘
与勒让德多项式拟合离散数据
使用
最小二乘
与勒让德多项式拟合离散数据1.准备离散数据假设我们有以下离散数据集:xxxyyy0.01.00.50.81.00.51.50.22.0-0.1我们想用勒让德多项式拟合这些数据,并通过
最小二乘
法找到勒让德多项式的系数
sz66cm
·
2024-09-12 00:21
线性代数
矩阵
机器学习
理论+实践,一文带你读懂线性回归的评价指标
在《模型之母:简单线性回归&
最小二乘
法》、《模型之母:简单线性回归&
最小二乘
法》中我们学习了简单线性回归、
最小二乘
法,并完成了代码的实现。
木东居士
·
2024-09-11 20:49
图像分割任务在设计模型
损失函数
时,高斯函数会被如何应用
什么是高斯函数?Gaussianfunction,又称为高斯函数,是一种常见的数学函数,定义为一种特定形状的钟形曲线。其表达式通常为:f(x)=a⋅exp(−(x−b)22c2)f(x)=a\cdot\exp\left(-\frac{(x-b)^2}{2c^2}\right)f(x)=a⋅exp(−2c2(x−b)2)其中:aaa决定了曲线的高度(峰值)。bbb是曲线中心位置的均值,决定曲线的对
Wils0nEdwards
·
2024-09-11 12:54
计算机视觉
人工智能
深度学习
Adam优化器:深度学习中的自适应方法
深度学习优化器概述优化器在深度学习中负责调整模型的参数,以最小化
损失函数
。常见的优化器包括SGD(随机梯度下降)、RMSprop、AdaGrad、AdaDelt
2401_85743969
·
2024-09-10 18:46
深度学习
人工智能
AttributeError: ‘tuple‘ object has no attribute ‘shape‘
objecthasnoattribute‘shape’在将keras代码改为tensorflow2代码的时候报了如下错误AttributeError:'tuple'objecthasnoattribute'shape'经过调查发现,
损失函数
写错了原来的是这样
晓胡同学
·
2024-09-10 07:35
keras
深度学习
tensorflow
python解
最小二乘
(least square)
给定A∈Rd×nA\in\R^{d\timesn}A∈Rd×n、b∈Rdb\in\R^db∈Rd,求x=argminx∥Ax−b∥2x=\arg\min_x\parallelAx-b\parallel^2x=argminx∥Ax−b∥2。numpy和scipy都有相应的包,见[1,2]。需要注意的是,传入的A、b是按列向量排,即A是[d,n]形状的,bbb只有一个就是[d],多个就是[d,m]
HackerTom
·
2024-09-09 16:40
机器学习
数学
scipy
numpy
最小二乘
least
square
python
torch.nn中的22种loss函数简述
这种
损失函数
会计算预测值和目标值之间差的绝对值的平均。2.NLLLoss(负对数似然损失)首先找到每个样本模型预测的概率分布中对应于真实标签的那个值,然后取这个值的负数,最后对所有样本的损失取平均。
01_6
·
2024-09-09 14:25
人工智能
机器学习
两种常用
损失函数
:nn.CrossEntropyLoss 与 nn.TripletMarginLoss
两种用于模型训练的
损失函数
:nn.CrossEntropyLoss和nn.TripletMarginLoss。它们在对比学习和分类任务中各自扮演不同的角色。接下来是对这两种
损失函数
的详细介绍。
大多_C
·
2024-09-09 14:55
人工智能
算法
python
机器学习
Focal Loss的简述与实现
文章目录交叉熵
损失函数
样本不均衡问题FocalLossFocalLoss的代码实现交叉熵
损失函数
Loss=L(y,p^)=−ylog(p^)−(1−y)log(1−p^)Loss=L(y,\hat{p}
友人Chi
·
2024-09-08 09:09
人工智能
机器学习
深度学习
线性代数学习笔记8-4:正定矩阵、二次型的几何意义、配方法与消元法的联系、
最小二乘
法与半正定矩阵A^T A
正定矩阵Positivedefinitematrice之前说过,正定矩阵是一类特殊的对称矩阵:正定矩阵满足对称矩阵的特性(特征值为实数并且拥有一套正交特征向量、正/负主元的数目等于正/负特征值的数目)另外,正定矩阵还具有更好的性质(所有特征值都为正实数、所有主元都为正实数、左上角的所有任意k阶(10(x≠0)\mathbf{x}^{T}\boldsymbol{A}\mathbf{x}>0\quad
Insomnia_X
·
2024-09-08 06:49
线性代数学习笔记
线性代数
矩阵
学习
Pytorch机器学习——3 神经网络(三)
outline神经元与神经网络激活函数前向算法
损失函数
反向传播算法数据的准备PyTorch实例:单层神经网络实现3.2激活函数3.2.2TanhTanh是一个双曲三角函数,其公式如下所示:image.png
辘轳鹿鹿
·
2024-09-07 21:50
pytorch建模的一般步骤
Pytorch的建模一般步骤1.导入必要的库2.准备数据3.定义数据集类(可选)4.加载数据5.定义模型6.定义
损失函数
和优化器7.训练模型8.评估模型9.保存和加载模型10.使用模型进行推理importtorch.nn.functionalasFimporttorch.nnasnnimporttorchfromtorchvisionimportdatasets
巴依老爷coder
·
2024-09-07 09:52
pytorch
深度学习
人工智能
C#语言实现
最小二乘
法算法
最小二乘
法(LeastSquaresMethod)是一种常用的拟合方法,用于在数据点之间找到最佳的直线(或其他函数)拟合。以下是一个用C#实现简单线性回归(即一元
最小二乘
法)的示例代码。
2401_86528135
·
2024-09-06 16:02
算法
c#
最小二乘法
叶斯神经网络(BNN)在训练过程中
损失函数
不收敛或跳动剧烈可能是由多种因素
贝叶斯神经网络(BNN)在训练过程中
损失函数
不收敛或跳动剧烈可能是由多种因素引起的,以下是一些可能的原因和相应的解决方案:学习率设置不当:过高的学习率可能导致
损失函数
在优化过程中震荡不收敛,而过低的学习率则可能导致收敛速度过慢
zhangfeng1133
·
2024-09-05 23:06
算法
人工智能
机器学习
从0开始深度学习(4)——线性回归概念
1.2
损失函数
在我
青石横刀策马
·
2024-09-05 15:47
从头学机器学习
深度学习
神经网络
人工智能
Circle Loss: A Unified Perspective of Pair Similarity Optimization简要阅读笔记
1.背景常见的分类
损失函数
可以概括为减小类内距离sns_nsn,增大类间距离sps_psp。优化目标如下:min(sn−sp)min(s_n-s_p)min(sn−sp)2.存在的问题优化不够灵活。
dailleson_
·
2024-09-05 07:20
机器学习
机器学习
数据挖掘
神经网络
深度学习
自然语言处理
李宏毅机器学习笔记——反向传播算法
反向传播算法反向传播(Backpropagation)是一种用于训练人工神经网络的算法,它通过计算
损失函数
相对于网络中每个参数的梯度来更新这些参数,从而最小化
损失函数
。
小陈phd
·
2024-09-04 10:07
机器学习
机器学习
算法
神经网络
pytorch pyro更高阶的优化器会使用更高阶的导数,比如二阶导数(Hessian矩阵)
在机器学习和深度学习中,优化器是用来更新模型参数以最小化
损失函数
的算法。通常,优化器会计算
损失函数
相对于参数的一阶导数(梯度),然后根据这些梯度来更新参数。
zhangfeng1133
·
2024-09-04 08:57
pytorch
矩阵
人工智能
第四讲:拟合算法
拟合问题的目标是寻求一个函数(曲线)使得该曲线在某种准则下与所有的数据点最为接近,即曲线拟合的最好(最小化
损失函数
)。插值算法中,得到的多项式f(x)要经过所有样本点。
云 无 心 以 出 岫
·
2024-09-04 08:53
数学建模
数学建模
算法
NDT算法
从最后的求解方法来看,NDT采用了加权
最小二乘
问题的高斯-牛顿法,和ICP算法的最明显区别是多了权重分布。从高翔书中的测试结果来看,NDT的收敛速度稍弱于点对面I
Joeybee
·
2024-09-03 23:29
SLAM
算法
计量经济学中的检验——F检验(概念、检验假设、适用条件及操作流程)
精确的“F检验”主要出现在当模型用
最小二乘
法拟合数
佛系研go
·
2024-09-03 18:29
计量经济学
笔记
分类预测|基于鲸鱼优化WOA
最小二乘
支持向量机LSSVM的数据分类预测Matlab程序WOA-LSSVM 多特征输入多类别输出
分类预测|基于鲸鱼优化WOA
最小二乘
支持向量机LSSVM的数据分类预测Matlab程序WOA-LSSVM多特征输入多类别输出文章目录一、基本原理1.
最小二乘
支持向量机(LSSVM)LSSVM的基本步骤:
机器不会学习CL
·
2024-09-03 07:15
分类预测
智能优化算法
分类
支持向量机
matlab
Spark MLlib LinearRegression线性回归算法源码解析
线性回归一元线性回归hθ(x)=θ0+θ1xhθ(x)=θ0+θ1x——————–1多元线性回归hθ(x)=∑mi=1θixi=θTXhθ(x)=∑i=1mθixi=θTX—————–2
损失函数
J(θ)
SmileySure
·
2024-09-02 09:33
Spark
人工智能算法
Spark
MLlib
PyTorch nn.MSELoss() 均方误差
损失函数
详解和要点提醒
文章目录nn.MSELoss()均方误差
损失函数
参数数学公式元素版本要点附录参考链接nn.MSELoss()均方误差
损失函数
torch.nn.MSELoss(size_average=None,reduce
Hoper.J
·
2024-09-01 01:14
PyTorch笔记
pytorch
MSELoss
均方误差
pytorch中的nn.MSELoss()均方误差
损失函数
一、nn.MSELoss()是PyTorch中的一个
损失函数
,用于计算均方误差损失。均方误差
损失函数
通常用于回归问题中,它的作用是计算目标值和模型预测值之间的平方差的平均值。
AndrewPerfect
·
2024-09-01 01:42
深度学习
python基础
pytorch基础
pytorch
人工智能
python
回归预测|基于卷积神经网络-鲸鱼优化-
最小二乘
支持向量机的数据回归预测Matlab程序 CNN-WOA-LSSVM
回归预测|基于卷积神经网络-鲸鱼优化-
最小二乘
支持向量机的数据回归预测Matlab程序CNN-WOA-LSSVM文章目录一、基本原理1.数据预处理2.特征提取(CNN)3.参数优化(WOA)4.模型训练
机器不会学习CL
·
2024-08-31 10:36
回归预测
智能优化算法
回归
cnn
支持向量机
推荐召回中ALS(交替
最小二乘
法)算法验证
模型训练步骤3:评估指标选择步骤4:性能评估代码实现导入依赖Mysql获取数据分批加载到矩阵目标coo_matrixvstackbm25_weight模型训练测试评估完整代码需求为了验证推荐系统中ALS(交替
最小二乘
山水阳泉曲
·
2024-08-31 09:59
算法
最小二乘法
机器学习
推荐算法
python
Datawhale X 李宏毅苹果书AI夏令营深度学习详解进阶Task02
目录一、自适应学习率二、学习率调度三、优化总结四、分类五、问题与解答本文了解到梯度下降是深度学习中最为基础的优化算法,其核心思想是沿着
损失函数
的梯度方向更新模型参数,以最小化损失值。
z are
·
2024-08-30 08:14
人工智能
深度学习
【CVPR‘24】BP-Net:用于深度补全的双边传播网络,新 SOTA!
2.双边传播模块(BilateralPropagationModule)深度参数化参数生成先验编码3.多模态融合(Multi-modalFusion)4.深度细化(DepthRefinement)5.
损失函数
结果与分析结论论文地址
BIT可达鸭
·
2024-08-30 04:50
深度补全:从入门到放弃
网络
KITTI
计算机视觉
cvpr
深度估计
L1正则和L2正则
等高线与路径HOML(Hands-OnMachineLearning)上对L1_norm和L2_norm的解释:左上图是L1_norm.背景是
损失函数
的等高线(圆形),前景是L1_penalty的等高线
wangke
·
2024-08-29 10:19
机器学习和深度学习中常见
损失函数
,包括
损失函数
的数学公式、推导及其在不同场景中的应用
目录引言什么是
损失函数
?
早起星人
·
2024-08-29 09:44
机器学习
深度学习
人工智能
AI学习记录 - 对抗性神经网络
有用点赞哦学习机器学习到一定程度之后,一般会先看他的
损失函数
是什么,看他的训练集是什么,训练集是什么,代表我使用模型的时候,输入是什么类型的数据。
victor-AI最好的学习方式是画图
·
2024-08-29 09:40
人工智能
学习
神经网络
基于用户的协同过滤以及ALS的混合召回算法
基于用户的协同过滤的缺点实际推荐系统中的替代方案ALSuserBaseCF+ALS混合推荐设计代码说明需求要将基于用户的协同过滤(User-BasedCollaborativeFiltering,UBCF)与交替
最小二乘
山水阳泉曲
·
2024-08-28 20:37
算法
机器学习
人工智能
矩阵
python
推荐算法
线性代数
理解PyTorch版YOLOv5模型构架
LeakyReLU激活函数,在最后的检测层中使用了Sigmoid激活函数,参考这里优化函数(OptimizationFunction):YOLOv5的默认优化算法是:SGD;可以通过命令行参数更改为Adam
损失函数
LabVIEW_Python
·
2024-08-28 17:05
【学习笔记】第三章深度学习基础——Datawhale X李宏毅苹果书 AI夏令营
先请出我们
损失函数
:L(θ),θ是模型中的参数的取值,是一个向量。由于网络的复杂性,我们无法直接写出
损失函数
,不过我们可以写出
损失函数
的近似取值。
MoyiTech
·
2024-08-28 11:38
人工智能
学习
笔记
反向传播算法:深度神经网络学习的核心机制
反向传播算法的基本概念反向传播算法结合了梯度下降优化和链式法则,通过计算
损失函数
关于网络参数的梯度来更新网络权重。1.
损失函数
2402_85758936
·
2024-08-28 08:22
算法
dnn
学习
什么是
损失函数
?
损失函数
(LossFunction)是在机器学习和深度学习中用来评估模型预测值与真实值之间差异的函数。它的主要目的是量化模型预测的错误程度,以便在训练过程中通过最小化这个错误来优化模型。
翰霖努力成为专家
·
2024-08-28 03:20
万能科普
数据挖掘
计算机视觉
机器学习
人工智能
自然语言处理
神经网络
深度学习
【机器学习】梯度下降算法
目标函数求目标函数的导数和梯度值沿着梯度方向的反方向更新参数重复直到满足条件以线性回归为例,通过找均方差
损失函数
最小值,得到最优的权重
de-feedback
·
2024-08-27 18:50
机器学习
算法
人工智能
回归分析系列22— 稳健回归
23.2常见的稳健回归方法稳健回归方法通过对异常值降低权重,或者对
损失函数
进行修正,以减少这些点对模型的影响。常见的稳健回归方法包括:M估计:通过改变
损失函数
,使得它对异常值不敏感。RANSAC:随
技术与健康
·
2024-08-26 11:20
线性回归
机器学习——逻辑回归
目录一、逻辑回归1.1、模型原理1.2、
损失函数
二、实例2.1、定义sigmoid函数2.2、数据集2.3、梯度上升算法2.4、预测函数2.5、绘画函数三、代码运行结果:四、总结优点:缺点:一、逻辑回归逻辑回归是一种广义的线性回归分析模型
wsdswzj
·
2024-08-25 17:06
机器学习
逻辑回归
人工智能
机器学习最优化方法之梯度下降
1、梯度下降出现的必然性利用
最小二乘
法求解线性回归的参数时,求解的过程中会涉及到矩阵求逆的步骤。随着维度的增多,矩阵求逆的代价会越来越大,而且有些矩阵没有逆矩阵,这个时候就需要用近似矩阵,影响精度。
whemy
·
2024-08-25 17:45
上一页
1
2
3
4
5
6
7
8
下一页
按字母分类:
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
其他