E-COM-NET
首页
在线工具
Layui镜像站
SUI文档
联系我们
推荐频道
Java
PHP
C++
C
C#
Python
Ruby
go语言
Scala
Servlet
Vue
MySQL
NoSQL
Redis
CSS
Oracle
SQL Server
DB2
HBase
Http
HTML5
Spring
Ajax
Jquery
JavaScript
Json
XML
NodeJs
mybatis
Hibernate
算法
设计模式
shell
数据结构
大数据
JS
消息中间件
正则表达式
Tomcat
SQL
Nginx
Shiro
Maven
Linux
机器学习+深度学习+强化学习
英伟达开源超强模型Nemotron-70B;OpenAI推出Windows版ChatGPT桌面客户端
该模型在多项基准测试中表现优异,采用混合训练方法和人类反馈
强化学习
,模型权重已在HuggingFace发布。Niemotron-70B的开发基于Llama-3.1,且开源数据集加强其训练效果。
go2coding
·
2025-03-24 14:55
AI日报
chatgpt
Java 大视界 -- 基于 Java 的大数据
机器学习
模型的多模态融合技术与应用(143)
亲爱的朋友们,热烈欢迎来到青云交的博客!能与诸位在此相逢,我倍感荣幸。在这飞速更迭的时代,我们都渴望一方心灵净土,而我的博客正是这样温暖的所在。这里为你呈上趣味与实用兼具的知识,也期待你毫无保留地分享独特见解,愿我们于此携手成长,共赴新程!一、欢迎加入【福利社群】点击快速加入:青云交灵犀技韵交响盛汇福利社群点击快速加入2:2024CSDN博客之星创作交流营(NEW)二、本博客的精华专栏:大数据新视
青云交
·
2025-03-24 14:20
大数据新视界
Java
大视界
java
大数据
机器学习
多模态融合
智能安防
智能客服
数据处理
2025年第二届
机器学习
与神经网络国际学术会议(MLNN 2025)
重要信息官网:www.icmlnn.org时间:2025年4月22-24日地点:中国-重庆简介2025年第二届
机器学习
与神经网络国际学术会议(MLNN2025)围绕学习系统与神经网络的核心理论、关键技术和应用展开讨论
分享学术科研与论文的禁小默
·
2025-03-24 14:19
机器学习
神经网络
人工智能
深度学习
--概率
1基本概率论1.1假设我们掷骰子,想知道1而不是看到另一个数字的概率,如果骰子是公司,那么所有6个结果(1..6),都有相同的可能发生,因此,我们可以说1发生的概率为1/6.然而现实生活中,对于我们从工厂收到的真实骰子,我们需要检查它是否有瑕疵,唯一的办法就是多投掷骰子,对于每个骰子观察到的[1.2...6]的概率随着投掷次数的增加,越来越接近1/6.导入必要的包%matplotlibinline
fantasy_arch
·
2025-03-24 13:44
深度学习
人工智能
深度讨论Python for循环
作者的其他文章推荐:
强化学习
再受关注!
观智能
·
2025-03-24 12:35
python
开发语言
MySQL中基于
机器学习
的自适应缓存热点识别优化策略——开启数据库性能新纪元
今天,我们将深入探讨一种创新的方法——基于
机器学习
的自适应缓存热点识别优化策略,并分享其在MySQL中的具体实现方案。为什么选择
机器学习
?传统上,开发者们依赖于手动配置或预设规则来决定哪
墨夶
·
2025-03-24 10:49
数据库学习资料1
数据库
mysql
机器学习
Open3D 点云DBSCAN聚类算法
目录一、DBSCAN基本原理二、代码实现2.1关键函数2.2完整代码三、实现效果3.1原始点云3.2聚类后点云Open3D点云算法汇总及实战案例汇总的目录地址:Open3D点云算法与点云
深度学习
案例汇总
MelaCandy
·
2025-03-24 09:43
算法
聚类
numpy
计算机视觉
图像处理
3d
目标检测领域总结:从传统方法到 Transformer 时代的革新
随着
深度学习
的兴起,目标检测方法已经取得了显著的进展。从最早的传统方法到现如今基于Transformer的先进算法,目标检测的发展经历了多个重要的阶段。
DoYangTan
·
2025-03-24 08:57
目标检测系列
目标检测
transformer
人工智能
2024MathorCup数学建模之——MathorCup奖杯”获得者经验思路分享
Python在数据分析、
深度学习
方面的优势愈发明显,而Matlab更适合进行物理仿真和数值计算。
美赛数学建模
·
2025-03-24 08:27
数学建模
AI人工智能软件开发方案:开启智能时代的创新钥匙
但随着大数据、云计算、
机器学习
、
深度学习
等技术的不断突破,AI迎来了爆发式增长。如今,AI已经深入到人们生活和工作
广州硅基技术官方
·
2025-03-24 07:50
人工智能
深度学习
框架PyTorch——从入门到精通(6.2)自动微分机制
本节自动微分机制是上一节自动微分的扩展内容自动微分是如何记录运算历史的保存张量非可微函数的梯度在本地设置禁用梯度计算设置requires_grad梯度模式(GradModes)默认模式(梯度模式)无梯度模式推理模式评估模式(`nn.Module.eval()`)自动求导中的原地操作原地操作的正确性检查多线程自动求导CPU上的并发不确定性计算图保留自动求导节点的线程安全性C++钩子函数不存在线程安全
Fansv587
·
2025-03-24 06:17
深度学习
pytorch
人工智能
经验分享
python
机器学习
Pytorch
深度学习
教程_9_nn模块构建神经网络
欢迎来到《
深度学习
保姆教程》系列的第九篇!
tRNA做科研
·
2025-03-24 06:08
深度学习保姆教程
深度学习
pytorch
神经网络
【
机器学习
】算法分类
有监督学习是
机器学习
中最常见的一种类型,它利用已知的输入特征和对应的输出标签来训练模型,使模型能够学习到特征与标签之间的映射关系。
CH3_CH2_CHO
·
2025-03-24 05:08
什么?!是机器学习!!
机器学习
算法
有监督学习
无监督学习
半监督学习
强化学习
Radiance Fields from VGGSfM和Mast3r:两种先进3D重建方法的比较与分析
近年来,随着
深度学习
技术的发展,一些新的方法被提出并取得了显著的进展。
2401_87458718
·
2025-03-24 05:31
3d
基于 PyTorch 的 MNIST 手写数字分类模型
二、依赖库torch:PyTorch
深度学习
框架的核心库,提供了张量操作、自动求导等功能。torch.nn:PyTorch的神经网络模块,包含了各种神经网络层、损失函数等。torc
欣然~
·
2025-03-24 04:27
pytorch
分类
人工智能
使用 Baseten 部署和运行
机器学习
模型的指南
随着
机器学习
模型在各个行业中的广泛应用,如何高效地部署和运行这些模型成为一个关键问题。本文将介绍如何使用Baseten平台来部署和服务
机器学习
模型。
shuoac
·
2025-03-24 03:17
机器学习
人工智能
python
高效快速教你DeepSeek如何进行本地部署并且可视化对话
科技文章:高效快速教你DeepSeek如何进行本地部署并且可视化对话摘要:随着自然语言处理(NLP)技术的进步,DeepSeek作为一款基于
深度学习
的语义搜索技术,广泛应用于文本理解、对话系统及信息检索等多个领域
大富大贵7
·
2025-03-24 02:35
程序员知识储备1
程序员知识储备2
程序员知识储备3
经验分享
机器学习
——分类、回归、聚类、LASSO回归、Ridge回归(自用)
纠正自己的误区:
机器学习
是一个大范围,并不是一个小的方向,比如:线性回归预测、卷积神经网络和强化学都是
机器学习
算法在不同场景的应用。
代码的建筑师
·
2025-03-24 02:02
模型学习
模型训练
机器学习
机器学习
分类
回归
正则化项
LASSO
Ridge
朴素
量化交易系统中如何处理
机器学习
模型的训练和部署?
microPythonPython最小内核源码解析NI-motion运动控制c语言示例代码解析python编程示例系列python编程示例系列二python的Web神器Streamlit如何应聘高薪职位量化交易系统中,
机器学习
模型的训练和部署需要遵循一套严密的流程
openwin_top
·
2025-03-24 01:27
量化交易系统开发
机器学习
人工智能
量化交易
Python基于
深度学习
的动物图片识别技术的研究与实现
博主介绍:✌程序员徐师兄、7年大厂程序员经历。全网粉丝12w+、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌文末获取源码联系精彩专栏推荐订阅不然下次找不到哟2022-2024年最全的计算机软件毕业设计选题大全:1000个热门选题推荐✅Java项目精品实战案例《100套》Java微信小程序项目实战《100套》感兴趣的可以先收藏起来,还有大家
Java老徐
·
2025-03-23 23:38
Python
毕业设计
python
深度学习
开发语言
深度学习的动物图片识别技术
Python动物图片识别技术
【
深度学习
与大模型基础】第7章-特征分解与奇异值分解
一、特征分解特征分解(EigenDecomposition)是线性代数中的一种重要方法,广泛应用于计算机行业的多个领域,如
机器学习
、图像处理和数据分析等。
lynn-66
·
2025-03-23 23:37
深度学习与大模型基础
算法
机器学习
人工智能
【论文阅读】Persistent Homology Captures the Generalization of Neural Networks Without A Validation Set
比较同调收敛性与神经网络的验证精度变化趋势摘要
机器学习
从业者通常通过监控模型的某些指标来估计其泛化误差,并在训练数值收敛之前停止训练,以防止过拟合。
开心星人
·
2025-03-23 22:34
论文阅读
论文阅读
“
深度学习
”都在学习什么
常见的
机器学习
分类算法俗话说三个臭皮匠胜过诸葛亮这里面集成学习就是将单一的算法弱弱结合算法融合用投票给特征值加权重AdaBoost集成学习算法通过迭代训练一系列弱分类器,给予分类错误样本更高权重,使得后续弱分类器更关注这些样本
扉间798
·
2025-03-23 22:01
深度学习
学习
人工智能
【论文阅读】Availability Attacks Create Shortcuts
还得重复读这一篇论文,有些地方理解不够透彻可用性攻击通过在训练数据中添加难以察觉的扰动,使数据无法被
机器学习
算法利用,从而防止数据被未经授权地使用。
开心星人
·
2025-03-23 22:01
论文阅读
论文阅读
深度学习
| pytorch + torchvision + python 版本对应及环境安装
目录一、版本对应二、安装命令(pip)1.版本(1)v2.5.1~v2.0.0(2)v1.13.1~v1.11.0(3)v1.10.1~v1.7.02.安装全过程(1)选择版本(2)安装结果参考文章一、版本对应下表来自pytorch的github官方文档:pytorch/vision:Datasets,TransformsandModelsspecifictoComputerVisionpytor
zfgfdgbhs
·
2025-03-23 22:30
深度学习
python
pytorch
机器学习
Day01人工智能概述
1.什么样的程序适合在gpu上运行计算密集型的程序:此类程序主要运算集中在寄存器,寄存器读写速度快,而GPU拥有强大的计算能力,能高效处理大量的寄存器运算,因此适合在GPU上运行。像科学计算中的数值模拟、密码破解等场景的程序,都属于计算密集型,在GPU上运行可大幅提升运算速度。易于并行的程序:GPU采用SIMD架构,有众多核心,同一时间每个核心适合做相同的事。易于并行的程序能充分利用GPU这一特性
山北雨夜漫步
·
2025-03-23 22:58
机器学习
人工智能
嵌入式Linux驱动开发:从基础知识到实践精通
本课程从基础知识点出发,详细介绍了内核接口理解、设备树编程、I/O操作、字符与块设备驱动、网络驱动、电源管理、调试技巧、硬件抽象层、设备模型和模块化编程等关键技能,并通过实际操作实践来
强化学习
,帮助开发者成长为嵌入式
坚持坚持那些年
·
2025-03-23 21:21
机器学习
:让计算机学会思考的艺术
目录什么是
机器学习
?
机器学习
的基本步骤常见的
机器学习
算法
机器学习
的实际应用如何入门
机器学习
?结语在当今数字化时代,
机器学习
(MachineLearning,ML)已经成为一个炙手可热的话题。
平凡而伟大.
·
2025-03-23 21:19
机器学习
机器学习
人工智能
机器学习
中的 K-均值聚类算法及其优缺点
K-均值聚类是一种常用的无监督学习算法,用于将数据集中的样本分成K个簇。其基本原理是将所有样本点划分到K个簇使得簇内样本点之间的距离尽可能接近,而不同簇之间的距离尽可能远。算法流程如下:随机选择K个样本点作为初始的聚类中心。将每个样本点分配到与其最近的聚类中心所在的簇。更新每个簇的聚类中心为该簇所有样本点的平均值。重复第2步和第3步,直到聚类中心不再变化或者达到最大迭代次数。优点:简单且易于实现。
平凡而伟大.
·
2025-03-23 21:18
机器学习
机器学习
算法
均值算法
一文讲清楚
深度学习
和
机器学习
目录1.定义
机器学习
(MachineLearning,ML)
深度学习
(DeepLearning,DL)2.工作原理
机器学习
深度学习
3.应用场景
机器学习
深度学习
4.主要区别5.为什么选择
深度学习
?
平凡而伟大.
·
2025-03-23 21:18
机器学习
人工智能
深度学习
机器学习
人工智能
DeepSeek:智能搜索与分析的新纪元
DeepSeek,这一基于
深度学习
和数据挖掘技术的智能搜索与分析系统,不仅重新定义了搜索引擎的边界,更以其卓越的性能和广泛的应用场景,为全球用户带来了前所未有的智能体验。
XRC2231
·
2025-03-23 20:11
学习
机器学习
knnlearn1
importmatplotlib.pyplotaspltimportnumpyasnpimportoperator#定义一个函数用于创建数据集defcreateDataSet():#定义特征矩阵,每个元素是一个二维坐标点,代表不同策略数据点的坐标group=np.array([[20,3],[15,5],[18,1],[5,17],[2,15],[3,20]])#定义每个数据点对应的标签,用于区分
XW-ABAP
·
2025-03-23 19:07
机器学习
机器学习
人工智能
基于 MySQL 和 Spring Boot 的在线论坛管理系统设计与实现
markdownCopy✌全网粉丝20W+,csdn特邀作者、博客专家、CSDN[新星计划]导师、java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java、pyhton、
机器学习
技术领域和毕业项目实战
城南|阿洋-计算机从小白到大神
·
2025-03-23 19:36
mysql
spring
boot
数据库
零基础入门
机器学习
:用Scikit-learn实现鸢尾花分类
适合人群:
机器学习
新手|数据分析爱好者|需快速展示案例的学生一、引言:为什么要学这个案例?目的:明确
机器学习
解决什么问题,建立学习信心。
机器学习
定义:让计算机从数据中自动学习规律(如分类鸢尾花品种)。
藍海琴泉
·
2025-03-23 19:31
机器学习
scikit-learn
分类
机器学习
--DBSCAN聚类算法详解
目录引言1.什么是DBSCAN聚类?2.DBSCAN聚类算法的原理3.DBSCAN算法的核心概念3.1邻域(Neighborhood)3.2核心点(CorePoint)3.3直接密度可达(DirectlyDensity-Reachable)3.4密度可达(Density-Reachable)3.5密度相连(Density-Connected)4.DBSCAN算法的步骤5.DBSCAN算法的优缺点5
2201_75491841
·
2025-03-23 18:30
机器学习
算法
聚类
人工智能
【
机器学习
】
机器学习
工程实战-第3章 数据收集和准备
上一章:第2章项目开始前文章目录3.1关于数据的问题3.1.1数据是否可获得3.1.2数据是否相当大3.1.3数据是否可用3.1.4数据是否可理解3.1.5数据是否可靠3.2数据的常见问题3.2.1高成本3.2.2质量差3.2.3噪声(noise)3.2.4偏差(bias)3.2.5预测能力低(lowpredictivepower)3.2.6过时的样本3.2.7离群值3.2.8数据泄露/目标泄漏3
腊肉芥末果
·
2025-03-23 18:28
机器学习工程实战
机器学习
人工智能
机器学习
实战 第一章
机器学习
基础
第一章
机器学习
1.1何谓
机器学习
1.2关键术语1.3
机器学习
的主要任务1.4如何选择合适的算法1.5开发
机器学习
应用程序的步骤1.6Python语言的优势1.1何谓
机器学习
1、简单地说,
机器学习
就是把无序的数据转换成有用的信息
LuoY、
·
2025-03-23 18:27
Machine
Learning
机器学习
算法
人工智能
数据挖掘实战-基于
机器学习
的垃圾邮件检测模型
♂️个人主页:@艾派森的个人主页✍作者简介:Python学习者希望大家多多支持,我们一起进步!如果文章对你有帮助的话,欢迎评论点赞收藏加关注+目录1.项目背景2.数据集介绍
艾派森
·
2025-03-23 18:26
数据挖掘实战合集
数据挖掘
机器学习
人工智能
python
集成学习(随机森林)
只要单分类器的表现不太差,集成学习的结果总是要好于单分类器的二、Bagging集成原理分类圆形和长方形三、随机森林在
机器学习
中,随机森林是
herry57
·
2025-03-23 18:24
数学建模
大数据
随机森林
集成学习
【
机器学习
】朴素贝叶斯入门:从零到垃圾邮件过滤实战
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
吴师兄大模型
·
2025-03-23 18:22
0基础实现机器学习入门到精通
机器学习
人工智能
朴素贝叶斯
深度学习
pytorch
sklearn
开发语言
【
机器学习
】
机器学习
工程实战-第2章 项目开始前
上一章:第1章概述文章目录2.1
机器学习
项目的优先级排序2.1.1
机器学习
的影响2.1.2
机器学习
的成本2.2估计
机器学习
项目的复杂度2.2.1未知因素2.2.2简化问题2.2.3非线性进展2.3确定
机器学习
项目的目标
腊肉芥末果
·
2025-03-23 18:21
机器学习工程实战
机器学习
人工智能
机器学习
怎么做特征工程
一、特征工程通俗解释特征工程就像厨师做菜前的食材处理:原始数据是“生肉和蔬菜”,特征工程是“切块、腌制、调料搭配”,目的是让
机器学习
模型(食客)更容易消化吸收,做出更好预测(品尝美味)。
全栈你个大西瓜
·
2025-03-23 17:47
人工智能
机器学习
人工智能
特征工程
数据预处理
特征变换
特征降维
特征构造
【
机器学习
】
机器学习
四大分类
机器学习
的方法主要可以分为四大类,根据学习方式和数据标注情况进行分类:1.监督学习(SupervisedLearning)特点:有标注数据(即训练数据有明确的输入(X)和输出(Y))。
藓类少女
·
2025-03-23 17:16
机器学习
机器学习
分类
人工智能
机器学习
——KNN超参数
sklearn.model_selection.GridSearchCV是scikit-learn中用于超参数调优的核心工具,通过结合交叉验证和网格搜索实现模型参数的自动化优化。以下是详细介绍:一、功能概述GridSearchCV在指定参数网格上穷举所有可能的超参数组合,通过交叉验证评估每组参数的性能,最终选择最优参数组合。其核心价值在于:自动化调参:替代手动参数调试,提升效率3。交叉验证支持:通
练习AI两年半
·
2025-03-23 17:44
机器学习
人工智能
深度学习
AI模型技术演进与行业应用图谱
主流
深度学习
框架如TensorFlow和PyTorch持续优化动态计算图与分布式训练能力,而MXNet凭借高效的异构计算支持在边缘场景崭露头角。
智能计算研究中心
·
2025-03-23 15:26
其他
重要重要!!fisher矩阵是怎么计算和更新的,以及计算过程中参数的物理含义
fisher矩阵是怎么计算和更新的,以及计算过程中参数的物理含义Fisher信息矩阵(FisherInformationMatrix,FIM)用于衡量模型参数估计的不确定性,其计算和更新在统计学、
机器学习
和优化中具有重要作用
ZhangJiQun&MXP
·
2025-03-23 14:20
教学
2021
论文
2024大模型以及算力
矩阵
概率论
线性代数
windows
微信
机器学习
使用Jupyter Notebook进行
深度学习
编程 -
深度学习
教程
大家好,今天我们要聊聊如何使用JupyterNotebook进行
深度学习
编程。
深度学习
是人工智能领域中的一项重要技术,通过模仿人脑神经网络的方式进行学习和分析。
shandianfk_com
·
2025-03-23 11:04
ChatGPT
AI
jupyter
深度学习
ide
深度学习
Deep Learning 第8章
深度学习
优化
深度学习
第8章
深度学习
的优化章节概述本章深入探讨了
深度学习
中的优化技术,旨在解决模型训练过程中面临的各种挑战。优化是
深度学习
的核心环节,直接关系到模型的训练效率和最终性能。
odoo中国
·
2025-03-23 10:26
AI编程
人工智能
深度学习
人工智能
优化
景联文科技提供高质量文本标注服务,驱动AI技术发展
文本标注是自然语言处理(NLP)领域的一个重要环节,它通过为文本的不同部分提供具体的含义和上下文信息,增强
机器学习
和
深度学习
模型对文本内容的理解能力。
景联文科技
·
2025-03-23 10:52
科技
人工智能
景联文科技:以高质量数据标注推动人工智能领域创新与发展
在当今这个由数据驱动的时代,高质量的数据标注对于推动
机器学习
、自然语言处理(NLP)、计算机视觉等领域的发展具有不可替代的重要性。
景联文科技
·
2025-03-23 09:45
科技
人工智能
数据标注
上一页
1
2
3
4
5
6
7
8
下一页
按字母分类:
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
其他