【最优传输二十八】Reusing the Task-specific Classifier as a Discriminator:Discriminator-free Adversarial Dom
1.motivation现有的对抗性UDA方法通常采用额外的鉴别器来与特征提取器进行最小-最大博弈。然而,这些方法大多未能有效利用预测的判别信息,从而导致生成器的模式崩溃。为了解决这个问题,本文设计了一个简单而有效的对抗性范式,即无鉴别器的对抗性学习网络(DALN),其中类别分类器被重新用作鉴别器,通过统一的目标实现显式的领域对齐和类别区分,使得DALN能够利用预测的判别信息来进行充分的特征对准。