- 动态规划算法之背包问题详细解读(附带Java代码解读)
南城花随雪。
算法分析算法动态规划
动态规划中的背包问题(KnapsackProblem)是经典问题之一,通常用来解决选择一组物品放入背包使得背包的价值最大化的问题。根据问题条件的不同,背包问题有很多种变体,如0-1背包问题、完全背包问题、多重背包问题等。这里,我们详细介绍最经典的0-1背包问题,并提供代码的详细解读。1.0-1背包问题简介在0-1背包问题中,有一个容量为C的背包和n件物品。每件物品有两个属性:重量w[i]和价值v[
- COMP26120 Lab Exercise 5: The 0/1 Knapsack Problem
java
IntroductionInthissectionweintroducethe‘0/1Knapsack’problem.The0/1KnapsackProblemandLogisticsSupposeanairlinecargocompanyhas1aeroplanewhichitfliesfromtheUKtotheUSonadailybasistotransportsomecargo.Inad
- 动态规划C语言
陇院第一Sweet Baby
算法数据结构c语言动态规划
#include#include#definemax(a,b)((a)>(b)?(a):(b))intknapsack(intW,intwt[],intval[],intn){inti,w;intK[n+1][W+1];//填充K()()数组//遍历每一个物品和背包容量for(i=0;i<=n;i++){for(w=0;w<=W;w++){if(i==0||w==0){K[i][w]=0;}els
- 完全背包算法
seanli1008
动态规划动态规划算法
上次,我们把完全背包转换成了0-1背包。由于至少放入一个,考虑最后一个放入的物品,其占用w的空间,价值是v。由于物品有无限多个,放入一个以后还是有无限多个,但是背包大小减少了w。问题转换为从前i个物品种选择一些物品放入j-w[i]的背包中可以获得的最大价值由此推出状态转移方程:dp[i][j]=max(dp[i-1][j],dp[i-1][j-k*w[i]]+k*v[i])那么能在空间上再优化一下
- 代码随想录算法训练营Day42|0-1背包理论基础、416. 分割等和子集
张金卓2023
算法
目录0-1背包理论基础0-1背包问题二维dp数组01背包算法实现一维dp数组01背包编辑算法实现416.分割等和子集前言思路算法实现总结0-1背包理论基础0-1背包问题题目链接https://kamacoder.com/problempage.php?pid=1046有n件物品和一个最多能背重量为w的背包。第i件物品的重量是weight[i],得到的价值是value[i]。每件物品只能用一次,求解
- 完全背包算法——蓝桥杯——(C语言)
夕阳西下&
蓝桥杯C语言蓝桥杯算法职场和发展c语言
问题描述有一個背包,容量為M。有N種物品,每種物品有其體積Wi與價值Vi。將這些物品的一部分放入背包,每種物品可以放任意多個,要求總體積不超過容量,且總價值最大。输入格式第一行為N,M。之後N行,每行為Wi,Vi。输出格式一個數,為最大價值。样例输入32015166675样例输出18数据规模和约定N,Mintdp[1001][1001];intw[1000],v[1000];intmain(){i
- 用Java实现01背包问题 用贪心算法
酷爱码
算法设计与分析第二版java贪心算法开发语言
贪心算法不是解决01背包问题的有效方法,因为贪心算法只能保证得到一个近似最优解,而无法保证得到最优解。因此,我们需要使用动态规划来解决01背包问题。以下是使用Java实现的动态规划解法:publicclassKnapsackProblem{publicstaticintknapSack(intW,int[]wt,int[]val,intn){int[][]dp=newint[n+1][W+1];f
- C#---枚举
renwen1579
C#c#
【千锋合集】史上最全Unity3D全套教程|匠心之作_哔哩哔哩_bilibili定义枚举类型枚举类型是自定义类型,这是与前面学习到数据类型最大的差别enum枚举名{枚举值1,枚举值2,...}//装备类型enumEquipType{Helmet,//头盔BodyArmor,//防弹衣Knapsack//背包}usingSystem;namespacedEnum{classProgram{enumE
- 01背包问题 从暴力到动态规划
清思越
算法专栏
1.什么是背包问题?具体题目最基本的背包问题就是01背包问题(01knapsackproblem):一共有N件物品,第i(i从1开始)件物品的重量为w[i],价值为v[i]。在总重量不超过背包承载上限W的情况下,能够装入背包的最大价值是多少?百度百科背包问题(Knapsackproblem)是一种组合优化的NP完全(NP-Complete,NPC)问题。问题可以描述为:给定一组物品,每种物品都有自
- 0-1背包问题(Knapsack Problem)-动态规划方法(C语言递归和迭代)
Jasonchen1224
动态规划c语言算法
0-1背包问题(KnapsackProblem)-动态规划方法(递归和迭代)前言背包0-1问题属于典型的求最大/最小子集问题范畴,它不像rod-cutting或matrix-chain-multiplication等问题,求解过程是按照单位等增或单位递减,0-1背包问题属于在集合范围内的某一个值,而且这些值大概率不是连续值。问题描述假定有N件物品,每件物品具有特定的价值value[i]和重量wei
- C#,背包问题(Knapsack Problem)贪心算法的源代码
深度混淆
C#算法演义AlgorithmRecipesc#算法背包问题动态规划Knapsack
背包问题(KnapSackProblem)的相关算法是常用的规划算法。一、什么是背包问题?背包的问题是,你有一个“袋子”,可以装有限数量的物品,鉴于你有一组物品可以从每个物品中选择,每个物品都有各自的“价值”,你如何才能最大限度地只装最有价值的物品呢。让我们以现实世界为例。一个强盗闯入一家珠宝店,想偷珍贵的珠宝。他的背包只能装50公斤重(他是超人)。当他在商店里走来走去想偷什么的时候,他必须在脑子
- 动态规划之完全背包问题
ly@눈_눈
#动态规划动态规划算法
完全背包问题1.完全背包2.零钱兑换3.完全平方数4.一和零完全背包问题(CompleteKnapsackProblem)是指给定一组物品,每种物品都有自己的重量和价值,物品数量无限。问题是如何选择物品放入背包,使得背包内物品的总重量不超过背包容量,同时尽可能获得最大的价值。它可以选择取0件、取1件、取2件……取k件,而0/1背包问题只能取0件、取1件。在完全背包问题中,物品不止有一个,也分两种,
- [算法笔记]NPC问题证明sample
Cplus_ruler
算法np问题NPC
[算法笔记]NPC问题证明sample前言一些概念一些例子Reductionto3-ColoringNPBasicsreducevertexcovertodominatingset另一个解法:reducesetcovertodominatingsetpartition,subsetsumandknapsack另解Orthogonalvectorsreducevertexcovertosetcove
- 2022-9-2何以包邮(01背包变形)(c/c++实测满分)
努力努力的脆脆鲨
ccf真题算法c++动态规划
总结:此题是背包问题的变形,物品的价值和重量有所改变,背包的容量限制有所改变,但核心动态规划求法没有改变。只需要在背包问题的解法上根据题意对物品表示,答案输出进行改变即可。背包算法:http://t.csdn.cn/xxDIx一、题目要求题目描述新学期伊始,适逢顿顿书城有购书满x元包邮的活动,小P同学欣然前往准备买些参考书。一番浏览后,小P初步筛选出n本书加入购物车中,其中第i本(1≤i≤n)的价
- 软考必背知识点常考点
周周学Java
安全httpslinux
1、DES是典型的私钥加密体制,属于对称加密,不属于公开秘钥加密。2、常见的公钥加密算法有:RSA、EIGamal、背包算法、Rabin(RSA的特例)、迪菲一赫尔曼密钥交换协议中的公钥加密算法、椭圆曲线加密算法(EllipticCurveCryptography,ECc);DSA数字签名(又称公钥数字签名),将摘要信息用发送者的私钥加密,接收者只有用发送者的公钥才能解密被加密的摘要信息,也是属于
- knapsack problem 1049. Last Stone Weight II 494. Target Sum 474. Ones and Zeroes
Fai_B
算法
1049.LastStoneWeightIIYouaregivenanarrayofintegersstoneswherestones[i]istheweightoftheithstone.Weareplayingagamewiththestones.Oneachturn,wechooseanytwostonesandsmashthemtogether.Supposethestoneshavewe
- UGUI综合
VRunSoftYanlz
UnityUIUGUI背包Canvas
UGUI综合##1、UGUI背包系统++1.1、UGUI背包系统++++1、UGUI应用最多的地方就是背包系统,其综合性比较强,背包系统做好了,其移植和重用性都比较好。++++2、背包里面最重要的功能是鼠标拖动物品应用到角色身上,以及物品与物品之间的交换。++++3、UGUI在游戏中实现“商店”方面用得也比较多。++1.2、UI层级结构++++UI层级:--Knapsack背包使用网格布局。--i
- 动态规划之背包问题系列总结
金州饿霸
算法设计与分析OJ题目动态规划算法
背包问题是一类经典的动态规划问题,它非常灵活,需要仔细琢磨体会,本文先对背包问题的几种常见类型作一个总结,再给出代码模板,然后再看看LeetCode上几个相关题目。根据维基百科,背包问题(Knapsackproblem)是一种组合优化的NP完全(NP-Complete,NPC)问题。问题可以描述为:给定一组物品,每种物品都有自己的重量和价格,在限定的总重量内,我们如何选择,才能使得物品的总价格最高
- 【动态规划算法】背包问题——0/1背包问题,多目标优化背包问题详解与示例
LeapMay
Python算法30篇算法动态规划
目录10/1背包问题2背包问题应用示例3背包问题的变种4多目标优化背包问题背包问题是动态规划中的一个经典问题,通常有两种主要变种:0/1背包问题和背包问题(FractionalKnapsackProblem)。这里我们先详细解释0/1背包问题。10/1背包问题问题描述:给定一组物品,每个物品都有自己的重量和价值,以及一个固定的容量的背包。目标是找到一个最佳的组合,使得放入背包的物品的总重量不超过背
- 基于OR-Tools的装箱问题模型求解(PythonAPI)
嘿嘻哈呀
运筹优化求解器运筹优化求解器PythonOR-Tools背包问题装箱问题整数规划
装箱问题一、背包问题(Knapsackproblem)1.10-1背包模型基于OR-Tools的0-1背包问题求解(PythonAPI)导入pywraplp库数据准备声明MIP求解器初始化决策变量初始化约束条件目标函数调用求解器打印结果1.2多重背包问题(Multipleknapsackproblems)基于OR-Tools多重背包问题求解(PythonAPI)1.3多维背包问题(Multi-di
- 零基础Go语言开发培训班有吗?go语言课程讲解:非对称加密算法
qfguankefeng
非对称加密简介非对称加密又叫做公开密钥加密(Publickeycryptography)或公钥加密。指加密和解密使用不同密钥的加密算法。公钥加密需要两个密钥,一个是公开密钥,另一个是私有密钥;一个用作加密的时候,另一个则用作解密。RSA是目前最有影响力的公钥加密算法,它能够抵抗到目前为止已知的所有密码攻击,已被ISO推荐为公钥数据加密标准。其他常见的公钥加密算法有:ElGamal、背包算法、Rab
- 【软考】10.2 贪心法/回溯法/数据挖掘/智能优化
一殊酒
数据库/数据结构算法贪心算法数据挖掘
《贪心法》适用于局部最优解典型应用:背包问题最有可能得到全局最优解:最大单位重量价值——>重量/价值《回溯法》系统地搜索一个问题的所有解或者任一解深度优先,从根节点出发适用于解决迷宫类的问题0-1背包算法的时间复杂度:O(nW)归并排序算法的时间复杂度:O(nlgn)《分支限界法》广度优先搜索求出满足条件的一个解;使函数值达到极大或极小的解——>最优解《概率算法》违反了算法的特性适用于一个问题没有
- java背包算法回溯法_【算法分析】实验 4. 回溯法求解0-1背包等问题
MisT大野兔
java背包算法回溯法
[TOC]实验内容本实验要求基于算法设计与分析的一般过程(即待求解问题的描述、算法设计、算法描述、算法正确性证明、算法分析、算法实现与测试),通过回溯法的在实际问题求解实践中,加深理解其基本原理和思想以及求解步骤。求解的问题为0-1背包。作为挑战:可以考虑回溯法在其他问题(如最大团问题、旅行商、图的m着色问题)。实验目的理解回溯法的核心思想以及求解过程(确定解的形式及解空间组织,分析出搜索过程中的
- java背包算法回溯法_经典算法9:回溯法之0--1背包问题
风中冰屑
java背包算法回溯法
1.题目分析:考虑到每种物品只有2种选择,即装入背包或不装入背包,并且物品数和背包容量已给定,要计算装入背包物品的最大价值和最优装入方案,可用回溯法搜索子集树的算法进行求解。2.算法设计:a.物品有n种,背包容量为C,分别用p[i]和w[i]存储第i种物品的价值和重量,用x[i]标记第i种物品是否装入背包,用bestx[i]存储第i种物品的最优装载方案;b.用递归函数Backtrack(i,cp,
- 01 背包问题解析与代码 python 实现
Septillions
算法python
01背包问题解析与代码问题定义给定一堆具有不同重量{w1,w2,⋯ ,wn}\{w_1,w_2,\cdots,w_n\}{w1,w2,⋯,wn}与价值{v1,v2,⋯ ,vn}\{v_1,v_2,\cdots,v_n\}{v1,v2,⋯,vn}的背包(knapsack),在总重量为W的情况下,如何选取背包才能获得最大价值?其中每种背包只能有被选取和不被选取两种选择。思路解析考虑解数组dp[i][j
- 非对称加密与数字证书
wnvalentin
网络与运维服务器/IIShttpsssl
文章目录1非对称加密2数字签名3数字证书4数字签名和数字证书的区别5CA认证中心如何保证权威性6HTTPS协议7HTTPS与SSL8为什么不一直使用HTTPS1非对称加密非对称加密,是指不能从加密密钥推算出解密密钥。加密密钥不需要保密,可以公开,称之为公钥,只需要保守解密秘钥称之为私钥。公钥和私钥是成对的。常见的非对称加密算法有:RSA、Elgamal、背包算法、Rabin、D-H、ECC。所谓“
- 算法笔记:0-1背包问题
m0_46521579
C++笔记学习算法
n个商品组成集合O,每个商品有两个属性vi(体积)和pi(价格),背包容量为C。求解一个商品子集S,令优化目标1.枚举所有商品组合共2^n-1种情况2.递归求解KnapsackSR(h,i,c):在第h个到第i个商品中,容量为c时的最优解P1:选择商品iP2:不选择商品i取二者最大值P=max{P1+pi,P2}3.带备忘递归4.动态规划时间复杂度O(n*C)最优子结构性质:(1)问题的最优解由相
- 算法笔记/USACO Guide GOLD金组DP 2. Knapsack to DP
GeekAlice
算法算法c++经验分享学习
今天学习背包DP(KnapsackDP)是USACOGuide的DP章节中第二点教程Knapsackproblemsgenerallyinvolvefillingalimitedcontainerwithasubsetofitemswherewewanttocountoroptimizesomequantityassociatedwiththeitems.Almosteverytime,youca
- 背包算法(Knapsack problem)
Wis57
算法
背包算法(Knapsackproblem)是一种常见的动态规划问题,它的基本思想是利用动态规划思想求解给定重量和价值下的最优解。具体来说,背包算法用于解决一个整数背包问题,即给定一组物品,每个物品有自己的重量和价值,在限定的总重量内,如何选择物品使得价值最大化。常见的整数背包问题包括01背包问题和完全背包问题。01背包问题:每个物品只有一个,可选或不选,求出在剩余容量为c的情况下,最大的价值是多少
- 一些杂题(9.23)
想吃好吃的!
c++算法leetcode
八月赛A.ExtraLargeKnapsack我的思路是否可行只要看所有异或在一起是否为0就可以了可行的方案只要有一个在第一个包里,剩下的都在第二个包里就可以了注意:n==1的时候不可行,要特判代码#includeusingnamespacestd;intmain(){ios::sync_with_stdio(0);cin.tie(0);intT;cin>>T;while(T--){intn;ci
- ASM系列五 利用TreeApi 解析生成Class
lijingyao8206
ASM字节码动态生成ClassNodeTreeAPI
前面CoreApi的介绍部分基本涵盖了ASMCore包下面的主要API及功能,其中还有一部分关于MetaData的解析和生成就不再赘述。这篇开始介绍ASM另一部分主要的Api。TreeApi。这一部分源码是关联的asm-tree-5.0.4的版本。
在介绍前,先要知道一点, Tree工程的接口基本可以完
- 链表树——复合数据结构应用实例
bardo
数据结构树型结构表结构设计链表菜单排序
我们清楚:数据库设计中,表结构设计的好坏,直接影响程序的复杂度。所以,本文就无限级分类(目录)树与链表的复合在表设计中的应用进行探讨。当然,什么是树,什么是链表,这里不作介绍。有兴趣可以去看相关的教材。
需求简介:
经常遇到这样的需求,我们希望能将保存在数据库中的树结构能够按确定的顺序读出来。比如,多级菜单、组织结构、商品分类。更具体的,我们希望某个二级菜单在这一级别中就是第一个。虽然它是最后
- 为啥要用位运算代替取模呢
chenchao051
位运算哈希汇编
在hash中查找key的时候,经常会发现用&取代%,先看两段代码吧,
JDK6中的HashMap中的indexFor方法:
/**
* Returns index for hash code h.
*/
static int indexFor(int h, int length) {
- 最近的情况
麦田的设计者
生活感悟计划软考想
今天是2015年4月27号
整理一下最近的思绪以及要完成的任务
1、最近在驾校科目二练车,每周四天,练三周。其实做什么都要用心,追求合理的途径解决。为
- PHP去掉字符串中最后一个字符的方法
IT独行者
PHP字符串
今天在PHP项目开发中遇到一个需求,去掉字符串中的最后一个字符 原字符串1,2,3,4,5,6, 去掉最后一个字符",",最终结果为1,2,3,4,5,6 代码如下:
$str = "1,2,3,4,5,6,";
$newstr = substr($str,0,strlen($str)-1);
echo $newstr;
- hadoop在linux上单机安装过程
_wy_
linuxhadoop
1、安装JDK
jdk版本最好是1.6以上,可以使用执行命令java -version查看当前JAVA版本号,如果报命令不存在或版本比较低,则需要安装一个高版本的JDK,并在/etc/profile的文件末尾,根据本机JDK实际的安装位置加上以下几行:
export JAVA_HOME=/usr/java/jdk1.7.0_25  
- JAVA进阶----分布式事务的一种简单处理方法
无量
多系统交互分布式事务
每个方法都是原子操作:
提供第三方服务的系统,要同时提供执行方法和对应的回滚方法
A系统调用B,C,D系统完成分布式事务
=========执行开始========
A.aa();
try {
B.bb();
} catch(Exception e) {
A.rollbackAa();
}
try {
C.cc();
} catch(Excep
- 安墨移动广 告:移动DSP厚积薄发 引领未来广 告业发展命脉
矮蛋蛋
hadoop互联网
“谁掌握了强大的DSP技术,谁将引领未来的广 告行业发展命脉。”2014年,移动广 告行业的热点非移动DSP莫属。各个圈子都在纷纷谈论,认为移动DSP是行业突破点,一时间许多移动广 告联盟风起云涌,竞相推出专属移动DSP产品。
到底什么是移动DSP呢?
DSP(Demand-SidePlatform),就是需求方平台,为解决广 告主投放的各种需求,真正实现人群定位的精准广
- myelipse设置
alafqq
IP
在一个项目的完整的生命周期中,其维护费用,往往是其开发费用的数倍。因此项目的可维护性、可复用性是衡量一个项目好坏的关键。而注释则是可维护性中必不可少的一环。
注释模板导入步骤
安装方法:
打开eclipse/myeclipse
选择 window-->Preferences-->JAVA-->Code-->Code
- java数组
百合不是茶
java数组
java数组的 声明 创建 初始化; java支持C语言
数组中的每个数都有唯一的一个下标
一维数组的定义 声明: int[] a = new int[3];声明数组中有三个数int[3]
int[] a 中有三个数,下标从0开始,可以同过for来遍历数组中的数
- javascript读取表单数据
bijian1013
JavaScript
利用javascript读取表单数据,可以利用以下三种方法获取:
1、通过表单ID属性:var a = document.getElementByIdx_x_x("id");
2、通过表单名称属性:var b = document.getElementsByName("name");
3、直接通过表单名字获取:var c = form.content.
- 探索JUnit4扩展:使用Theory
bijian1013
javaJUnitTheory
理论机制(Theory)
一.为什么要引用理论机制(Theory)
当今软件开发中,测试驱动开发(TDD — Test-driven development)越发流行。为什么 TDD 会如此流行呢?因为它确实拥有很多优点,它允许开发人员通过简单的例子来指定和表明他们代码的行为意图。
TDD 的优点:
&nb
- [Spring Data Mongo一]Spring Mongo Template操作MongoDB
bit1129
template
什么是Spring Data Mongo
Spring Data MongoDB项目对访问MongoDB的Java客户端API进行了封装,这种封装类似于Spring封装Hibernate和JDBC而提供的HibernateTemplate和JDBCTemplate,主要能力包括
1. 封装客户端跟MongoDB的链接管理
2. 文档-对象映射,通过注解:@Document(collectio
- 【Kafka八】Zookeeper上关于Kafka的配置信息
bit1129
zookeeper
问题:
1. Kafka的哪些信息记录在Zookeeper中 2. Consumer Group消费的每个Partition的Offset信息存放在什么位置
3. Topic的每个Partition存放在哪个Broker上的信息存放在哪里
4. Producer跟Zookeeper究竟有没有关系?没有关系!!!
//consumers、config、brokers、cont
- java OOM内存异常的四种类型及异常与解决方案
ronin47
java OOM 内存异常
OOM异常的四种类型:
一: StackOverflowError :通常因为递归函数引起(死递归,递归太深)。-Xss 128k 一般够用。
二: out Of memory: PermGen Space:通常是动态类大多,比如web 服务器自动更新部署时引起。-Xmx
- java-实现链表反转-递归和非递归实现
bylijinnan
java
20120422更新:
对链表中部分节点进行反转操作,这些节点相隔k个:
0->1->2->3->4->5->6->7->8->9
k=2
8->1->6->3->4->5->2->7->0->9
注意1 3 5 7 9 位置是不变的。
解法:
将链表拆成两部分:
a.0-&
- Netty源码学习-DelimiterBasedFrameDecoder
bylijinnan
javanetty
看DelimiterBasedFrameDecoder的API,有举例:
接收到的ChannelBuffer如下:
+--------------+
| ABC\nDEF\r\n |
+--------------+
经过DelimiterBasedFrameDecoder(Delimiters.lineDelimiter())之后,得到:
+-----+----
- linux的一些命令 -查看cc攻击-网口ip统计等
hotsunshine
linux
Linux判断CC攻击命令详解
2011年12月23日 ⁄ 安全 ⁄ 暂无评论
查看所有80端口的连接数
netstat -nat|grep -i '80'|wc -l
对连接的IP按连接数量进行排序
netstat -ntu | awk '{print $5}' | cut -d: -f1 | sort | uniq -c | sort -n
查看TCP连接状态
n
- Spring获取SessionFactory
ctrain
sessionFactory
String sql = "select sysdate from dual";
WebApplicationContext wac = ContextLoader.getCurrentWebApplicationContext();
String[] names = wac.getBeanDefinitionNames();
for(int i=0; i&
- Hive几种导出数据方式
daizj
hive数据导出
Hive几种导出数据方式
1.拷贝文件
如果数据文件恰好是用户需要的格式,那么只需要拷贝文件或文件夹就可以。
hadoop fs –cp source_path target_path
2.导出到本地文件系统
--不能使用insert into local directory来导出数据,会报错
--只能使用
- 编程之美
dcj3sjt126com
编程PHP重构
我个人的 PHP 编程经验中,递归调用常常与静态变量使用。静态变量的含义可以参考 PHP 手册。希望下面的代码,会更有利于对递归以及静态变量的理解
header("Content-type: text/plain");
function static_function () {
static $i = 0;
if ($i++ < 1
- Android保存用户名和密码
dcj3sjt126com
android
转自:http://www.2cto.com/kf/201401/272336.html
我们不管在开发一个项目或者使用别人的项目,都有用户登录功能,为了让用户的体验效果更好,我们通常会做一个功能,叫做保存用户,这样做的目地就是为了让用户下一次再使用该程序不会重新输入用户名和密码,这里我使用3种方式来存储用户名和密码
1、通过普通 的txt文本存储
2、通过properties属性文件进行存
- Oracle 复习笔记之同义词
eksliang
Oracle 同义词Oracle synonym
转载请出自出处:http://eksliang.iteye.com/blog/2098861
1.什么是同义词
同义词是现有模式对象的一个别名。
概念性的东西,什么是模式呢?创建一个用户,就相应的创建了 一个模式。模式是指数据库对象,是对用户所创建的数据对象的总称。模式对象包括表、视图、索引、同义词、序列、过
- Ajax案例
gongmeitao
Ajaxjsp
数据库采用Sql Server2005
项目名称为:Ajax_Demo
1.com.demo.conn包
package com.demo.conn;
import java.sql.Connection;import java.sql.DriverManager;import java.sql.SQLException;
//获取数据库连接的类public class DBConnec
- ASP.NET中Request.RawUrl、Request.Url的区别
hvt
.netWebC#asp.nethovertree
如果访问的地址是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree%3C&n=myslider#zonemenu那么Request.Url.ToString() 的值是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree<&
- SVG 教程 (七)SVG 实例,SVG 参考手册
天梯梦
svg
SVG 实例 在线实例
下面的例子是把SVG代码直接嵌入到HTML代码中。
谷歌Chrome,火狐,Internet Explorer9,和Safari都支持。
注意:下面的例子将不会在Opera运行,即使Opera支持SVG - 它也不支持SVG在HTML代码中直接使用。 SVG 实例
SVG基本形状
一个圆
矩形
不透明矩形
一个矩形不透明2
一个带圆角矩
- 事务管理
luyulong
javaspring编程事务
事物管理
spring事物的好处
为不同的事物API提供了一致的编程模型
支持声明式事务管理
提供比大多数事务API更简单更易于使用的编程式事务管理API
整合spring的各种数据访问抽象
TransactionDefinition
定义了事务策略
int getIsolationLevel()得到当前事务的隔离级别
READ_COMMITTED
- 基础数据结构和算法十一:Red-black binary search tree
sunwinner
AlgorithmRed-black
The insertion algorithm for 2-3 trees just described is not difficult to understand; now, we will see that it is also not difficult to implement. We will consider a simple representation known
- centos同步时间
stunizhengjia
linux集群同步时间
做了集群,时间的同步就显得非常必要了。 以下是查到的如何做时间同步。 在CentOS 5不再区分客户端和服务器,只要配置了NTP,它就会提供NTP服务。 1)确认已经ntp程序包: # yum install ntp 2)配置时间源(默认就行,不需要修改) # vi /etc/ntp.conf server pool.ntp.o
- ITeye 9月技术图书有奖试读获奖名单公布
ITeye管理员
ITeye
ITeye携手博文视点举办的9月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。 9月试读活动回顾:http://webmaster.iteye.com/blog/2118112本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《NFC:Arduino、Andro