- 一名前端工程师的机器学习之旅
IT大咖说
内容来源:2017年6月24日,美登科技前端架构师邓鋆在“腾讯Web前端大会TFC2017”进行《一名前端工程师的机器学习之旅》演讲分享。IT大咖说(WeChat_ID:itdakashuo)作为独家视频合作方,经主办方和讲者审阅授权发布。阅读字数:1980|4分钟阅读观看嘉宾完整演讲视频及PPT,请点击:http://t.cn/ELJPm9v摘要美登科技前端工程师邓鋆分享自己的机器学习之旅心路历
- 深度估计之旅 — AICrowd单目深度感知
小北的北
训练图像示例与真实标签最近,我参加了AICrowd单目深度感知比赛,这是我机器学习之旅中的一个值得自豪的里程碑。我获得了第四名,并获得了“最创意解决方案奖”。在这篇文章中,我将详细介绍挑战、我的方法以及所学到的经验。我还开源了代码和模型权重,可以在这里访问-SAUDD2023。最终排行榜挑战比赛围绕两个关键任务展开-语义分割和单目深度感知。这两个任务在模型架构方面相似,但在足够不同的地方需要特别注
- Amazon SageMaker机器学习之旅的助推器
国服第二切图仔
通往AIGC之路机器学习人工智能亚马逊云科技SageMaker
授权声明:本篇文章授权活动官方亚马逊云科技文章转发、改写权,包括不限于在亚马逊云科技开发者社区,知乎,自媒体平台,第三方开发者媒体等亚马逊云科技官方渠道。一、前言在当今的数字化时代,人工智能和机器学习已经成为推动社会进步的重要引擎。亚马逊云科技在2023re:Invent全球大会上,宣布推出五项AmazonSageMaker新功能:AmazonSageMakerHyperPod通过为大规模分布式训
- 机器学习之旅-从Python 开始
分享IT资源
机器学习python人工智能
导读你想知道如何开始机器学习吗?在这篇文章中,我将简要概括一下使用Python来开始机器学习的一些步骤。Python是一门流行的开源程序设计语言,也是在人工智能及其它相关科学领域中最常用的语言之一。机器学习简称ML,是人工智能的一个分支,它是利用算法从数据中进行学习,然后作出预测。机器学习有助于帮助我们预测我们周围的世界。你想知道如何开始机器学习吗?在这篇文章中,我将简要概括一下使用Python来
- 机器学习之旅-从Python 开始
云计算运维工程师
机器学习python人工智能
你想知道如何开始机器学习吗?在这篇文章中,我将简要概括一下使用Python来开始机器学习的一些步骤。Python是一门流行的开源程序设计语言,也是在人工智能及其它相关科学领域中最常用的语言之一。机器学习简称ML,是人工智能的一个分支,它是利用算法从数据中进行学习,然后作出预测。机器学习有助于帮助我们预测我们周围的世界。你想知道如何开始机器学习吗?在这篇文章中,我将简要概括一下使用Python来开始
- 「ML笔记」- 假阳性&假阴性
adi0229
问题:机器学习里,什么是假阳性,什么是假阴性?学习ing,在机器学习之旅,麻省博士小姐姐带我︿( ̄︶ ̄)︿曾经,在python的机器学习开源库sklearn的混淆矩阵模块scikit-learn-confusion_matrix里,笔者常常看tn,fp,fn,tp等缩写变量,百思不得其解。>>>tn,fp,fn,tp=confusion_matrix([0,1,0,1],[1,1,1,0]).ra
- 【DW 11月-西瓜书学习笔记】Task01:绪论、模型评估与选择
以身外身做梦中梦
第一章绪论让我们的机器学习之旅从挑选一个好瓜开始。只绪论介绍基本术语、机器学习的发展,我只记录一些特殊的术语。1.1机器学习的定义计算机通过学习经验数据得到模型,面对新情况时做出有效判断。还有一种解释:假设:P:计算机程序在某任务类T上的性能。T:计算机程序希望实现的任务类。E:表示经验,即历史的数据集。若该计算机程序通过利用经验E在任务T上获得了性能P的改善,则称该程序对E进行了学习。1.2机器
- 机器学习之旅—决策树(3)
zidea
dt_cover.png从ID3到C4.5ID3定义ID3算法的核心是在决策树各个子节点上应用信息增益准则选择特征,递归的构建决策树,具体方法是:从根节点开始,对节点计算所有可能的特征的信息增益,选择信息增益最大的特征作为节点的特征,由该特征的不同取值建立子节点;再对子节点递归调用以上方法,构建决策树。我们通过一个具体实例来讲解如何通过ID3算法来选择节点。求职问题dt_015.jpg第一列表示待
- 机器学习之旅---用K近邻算法归类豆瓣文章
Caesar_6953
2019/11/12Caesar前言 今天开始,我将扎进机器学习的大坑。选择一个经典、容易理解的机器学习算法---K近邻算法来热身,我将用K近邻算法来做一个常见的应用,给豆瓣文章分类。现在开始:1.1场景image.png想象自己是这幅图中的绿色圆圈,我是谁?我是什么?k近邻算法解答这个问题的依据是:,图中所有图形到绿色圆圈的距离,选出距离最短的k个,然后统计这k个图形的所属类别,投票出类占比最
- 初学者的机器学习入门实战教程!
spearhead_cai
机器学习如何构建一个完整的机器学习项目机器学习教程
原文链接:https://www.pyimagesearch.com/2019/01/14/machine-learning-in-python/作者:AdrianRosebrock这是一篇手把手教你使用Python实现机器学习算法,并在数值型数据和图像数据集上运行模型的入门教程,当你看完本文后,你应当可以开始你的机器学习之旅了!本教程会采用下述两个库来实现机器学习算法:scikit-learnK
- 神经网络:前馈和反向传播解释和优化
梅如你
神经网络深度学习人工智能
深度学习神经网络:前馈和反向传播解释和优化什么是神经网络?开发人员应该了解反向传播,以找出他们的代码有时不起作用的原因。反向传播数学的视觉和脚踏实地的解释。卡斯帕汉森理学硕士AI学生@DTU。这是我的机器学习之旅“从零开始”。以易于理解的方式传达我学到的知识是我的首要任务。卡斯帕汉森的更多帖子。真正理解神经网络——深度学习(机器学习的子领域)中最受认可的概念之一是神经网络*。*相当重要的一点是,所
- 使用 Amazon SageMaker JumpStart 更轻松地在组织内共享 ML 模型和笔记本
亚马逊云开发者
人工智能
点击上方【凌云驭势重塑未来】一起共赴年度科技盛宴!AmazonSageMakerJumpStart是一个机器学习(ML)中心,可以帮助您加快机器学习之旅。采用SageMakerJumpStart您可以访问内置算法,包括来自常用模型中心的预训练模型、帮助您执行文章摘要和图像生成等任务的预训练基础模型,以及用于解决常见用例的端到端解决方案。现在,您就可以使用SageMakerJumpStart更便捷的
- kNN原理与python应用
wbing96
Pythonpython
文章目录0.原理1.应用-Iris数据集查看数据数据拆分为训练集与测试集观察数据-可视化kNN-model评估模型-使用测试集,进行结果对比进行预测2.模型复杂度和泛化能力之间的关系-乳腺癌数据集3.kNN回归0.原理待更1.应用-Iris数据集来源于《Python机器学习基础教程》一书,机器学习之旅从鸢尾花开始~注意:python中机器学习数据集结构:featuretargetX1,…,Xnyd
- 从零开始机器学习之旅2【神经网络】
owCode
机器学习心得
模块1准备阶段1.1第三方包准备#encoding=utf8importpandasaspdimportnumpyasnpfromsklearnimportmodel_selectionfromsklearn.metricsimportaccuracy_scorefromsklearn.metricsimportclassification_reportfromsklearn.preprocess
- 从零开始的鸿蒙机器学习之旅-NLP情感分析
龙眼lychee
harmonyos机器学习自然语言处理
什么!竟然有人想用鸿蒙做机器学习!那又有何不可?最近一直在python进行RNN神经网络的训练,做一些情感分析,突发奇想,在鸿蒙上是否也有操作的空间?答案是肯定的,本次我们将使用StanfordCoreNLP(斯坦福自然语言工具包)开发一个英文语句情感分析的简单应用。0.效果展示1.StanfordCoreNLPStandfordCoreNLP是斯坦福大学的自然语言处理工具包,提供了一套人类语言处
- 动手学习深度学习-前言(深度学习介绍) 学习笔记
路新航
深度学习diveintoDL深度学习
前言机器学习(machinelearning,ML)是强大的可以从经验中学习的技术。通常采用观测数据或与环境交互的形式,机器学习算法会积累更多的经验,其性能也会逐步提高。相反,对比电子商务平台等,一直执行相同的业务逻辑,无论积累多少经验,都不会自动提高(直到开发人员认识到并更新软件)。在这本书中,将带你开启机器学习之旅,并特别关注深度学习(deeplearning)的基础知识。这是一套强大的技术,
- 传统机器学习笔记3——逻辑回归算法
I松风水月
机器学习机器学习回归逻辑回归
目录前言一.逻辑回归核心思想1.1.线性回归与分类1.2.核心思想二.Sigmoid函数与决策边界2.1.线性决策边界的生成2.2.非线性决策边界生成三.梯度下降与优化3.1.损失函数3.2.梯度下降四.正则化与过拟合4.1.过拟合4.2.正则化五.特征变换与非线性表达5.1.多项式特征5.2.非线性切分前言 上篇博文我们介绍了KNN算法,这篇博文我们继续开始我们的传统机器学习之旅,开始学习逻辑
- 还挺好看!用命令行画思维导图;66天机器学习之旅;斯坦福CS234 强化学习课程;哈佛CS50 计算机科学导论课程;前沿论文 | ShowMeAI资讯日报
ShowMeAI
ShowMeAI资讯日报⛽首席AI资讯收纳官人工智能强化学习机器学习计算机科学数据科学
日报合辑|电子月刊|公众号下载资料|@韩信子工具&框架『Gymnasium』强化学习算法开发与比较的标准APIhttps://github.com/Farama-Foundation/Gymnasiumhttps://gymnasium.farama.org/Gymnasium是一个开源的Python库,用于开发和比较强化学习算法,它提供了一个标准的API,用于学习算法和环境之间的交互,以及一套符
- 使用Scikit-learn开启机器学习之旅
盼小辉丶
人工智能之旅机器学习scikit-learnpython
1.机器学习基础机器学习是令计算机根据可用数据执行相应策略而无需以明确的编程方式执行策略的一门学科。在过去几十年间,由于可用数据的数量和质量呈指数级增长,同时高性能的计算设备也得到了快速发展,机器学习在图像识别、自然语言处理、推荐系统和自动驾驶等领域都取得了突破性进展。机器学习的目标是构建强大的模型,可以操纵输入数据以预测输出,同时随着新数据的增加不断更新模型。传递到计算机中的任何信息或数据都可以
- python机器学习算法_手把手教你使用Python实现机器学习算法
weixin_39728544
python机器学习算法
这是一篇手把手教你使用Python实现机器学习算法,并在数值型数据和图像数据集上运行模型的入门教程,当你看完本文后,你应当可以开始你的机器学习之旅了!本教程会采用下述两个库来实现机器学习算法:scikit-learnKeras此外,你还将学习到:评估你的问题准备数据(原始数据、特征提取、特征工程等等)检查各种机器学习算法检验实验结果深入了解性能最好的算法在本文会用到的机器学习算法包括:KNN朴素贝
- 《机器学习实战》萌新读书笔记 ② — — 第三章 决策树 内容提要、知识拓展和详细注释代码
不见辰兮
机器学习实战机器学习python信息熵决策树
目录引入:什么是决策树?决策树相较KNN的优势?决策树的运作方式?决策树模型的优缺?决策树的构造:构造思路信息增益划分数据集递归构造决策树绘制决策树树形图Matplotlib注解构造注解树测试和存储分类器:使用决策树执行分类:存储建立好的决策树:实例:使用决策树预测隐形眼镜类型:总结开坑前言:大一在读新生开启了自己的机器学习之旅,从接触到现在已经有快两个月了,现在回过头为夯实基础,从开始看起《机器
- 机器学习之旅---特征工程和数据预处理
Caesar_6953
2019/11/19Caesar前言 有这么一句话在业界广泛流传:数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已。那特征工程到底是什么呢?顾名思义,其本质是一项工程活动,目的是最大限度地从原始数据中提取特征以供算法和模型使用。通过特征提取,我们能得到未经处理的特征,需要通过数据预处理手段来解决。1.特征工程 特征处理是特征工程的核心部分,sklearn提供了较为完整的特征处理
- 大数据比赛第一步——数据分析
空白
机器学习大数据比赛
前言大家好,我是机器学习领域的新手,最近新开了《从零开始的机器学习之旅》专栏,希望能与大家共同进步,如有错误和意见请不吝指出,谢谢。最近看了一些比赛code,也自己试着提交了一下,真正体验到比赛的乐趣。但是,光看代码提高不了比赛能力,总结才是王道。所以我打算做一个系列,总结成模板,方便能有部分思路能够应用到以后的所有比赛中。系列包括:数据分析特征工程模型训练模型融合数据分析对数据的分析,无疑是十分
- 大数据比赛第一步——数据分析
空白
机器学习大数据比赛
前言大家好,我是机器学习领域的新手,最近新开了《从零开始的机器学习之旅》专栏,希望能与大家共同进步,如有错误和意见请不吝指出,谢谢。最近看了一些比赛code,也自己试着提交了一下,真正体验到比赛的乐趣。但是,光看代码提高不了比赛能力,总结才是王道。所以我打算做一个系列,总结成模板,方便能有部分思路能够应用到以后的所有比赛中。系列包括:数据分析特征工程模型训练模型融合数据分析对数据的分析,无疑是十分
- 机器学习之旅(二):决策树
樂仔的机器学习之旅
机器学习
机器学习之旅(二):决策树决策树工作原理决策树(DecisionTree)是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法。由于这种决策分支画成图形很像一棵树的枝干,故称决策树。在机器学习中,决策树是一个预测模型,他代表的是对象属性与对象值之间的一种映射关系。Entropy=系统的凌乱程度
- 倒数三天 | Study Jam 即将截止,你完成了吗?
谷歌开发者_
机器学习StudyJam已经上线三周了!(扫描二维码立即开启TensorFlow+机器学习之旅)在这三周里,GDE李锡涵带领大家通过《简单粗暴TensorFlow2》系列内容的描述,步入TensorFlow与机器学习的世界。三周中,我们学习与了解了TensorFlow和机器学习的基础,并在自己的环境中安装与配置好TensorFlow,实现了第一次模型的建立与训练,学习使用了TensorFlow2中
- 机器学习基础要点_扩展机器学习的5个要点
cxq8989
机器学习基础要点根据Gartner最近的一项调查,许多公司才刚刚开始他们的机器学习之旅,并且37%的组织已经实施了人工智能。如果您打开了机器学习的大门,则可能需要在开始机器学习概念证明或AI,机器学习和深度学习的完整指南之前先复习10个问题。机器学习在不断发展,新的商业突破,科学进步,框架改进和最佳实践经常被报道。[机器学习入门:什么是机器学习?从数据派生的软件,进行了解释。•如何开始机器学习。•
- 初学者的机器学习入门实战教程!
材才才
原文链接:https://www.pyimagesearch.com/2019/01/14/machine-learning-in-python/作者:AdrianRosebrock这是一篇手把手教你使用Python实现机器学习算法,并在数值型数据和图像数据集上运行模型的入门教程,当你看完本文后,你应当可以开始你的机器学习之旅了!本教程会采用下述两个库来实现机器学习算法:scikit-learnK
- Python3入门机器学习 经典算法与应用 轻松入行人工智能
IT猿课(ityuanke.com)
python
查看地址第1章欢迎来到Python3玩转机器学习欢迎大家来到《Python3玩转机器学习》的课堂。在这个课程中,我们将从0开始,一点一点进入机器学习的世界。本门课程对机器学习领域的学习,绝不不仅仅只是对算法的学习,还包括诸如算法的评价,方法的选择,模型的优化,参数的调整,数据的整理,等等一系列工作。准备好了吗?现在开始我们的机器学习之旅!...1-1什么是机器学习试看1-2课程涵盖的内容和理念试看
- 机器学习之旅---SVM分类器
taotao1233
机器学习
本次内容主要讲解什么是支持向量,SVM分类是如何推导的,最小序列SMO算法部分推导。最后给出线性和非线性2分类问题的smo算法matlab实现代码。一、什么是支持向量机(SupportVectorMachine)本节内容部分翻译Opencv教程:http://docs.opencv.org/doc/tutorials/ml/introduction_to_svm/introduction_to_s
- 深入浅出Java Annotation(元注解和自定义注解)
Josh_Persistence
Java Annotation元注解自定义注解
一、基本概述
Annontation是Java5开始引入的新特征。中文名称一般叫注解。它提供了一种安全的类似注释的机制,用来将任何的信息或元数据(metadata)与程序元素(类、方法、成员变量等)进行关联。
更通俗的意思是为程序的元素(类、方法、成员变量)加上更直观更明了的说明,这些说明信息是与程序的业务逻辑无关,并且是供指定的工具或
- mysql优化特定类型的查询
annan211
java工作mysql
本节所介绍的查询优化的技巧都是和特定版本相关的,所以对于未来mysql的版本未必适用。
1 优化count查询
对于count这个函数的网上的大部分资料都是错误的或者是理解的都是一知半解的。在做优化之前我们先来看看
真正的count()函数的作用到底是什么。
count()是一个特殊的函数,有两种非常不同的作用,他可以统计某个列值的数量,也可以统计行数。
在统
- MAC下安装多版本JDK和切换几种方式
棋子chessman
jdk
环境:
MAC AIR,OS X 10.10,64位
历史:
过去 Mac 上的 Java 都是由 Apple 自己提供,只支持到 Java 6,并且OS X 10.7 开始系统并不自带(而是可选安装)(原自带的是1.6)。
后来 Apple 加入 OpenJDK 继续支持 Java 6,而 Java 7 将由 Oracle 负责提供。
在终端中输入jav
- javaScript (1)
Array_06
JavaScriptjava浏览器
JavaScript
1、运算符
运算符就是完成操作的一系列符号,它有七类: 赋值运算符(=,+=,-=,*=,/=,%=,<<=,>>=,|=,&=)、算术运算符(+,-,*,/,++,--,%)、比较运算符(>,<,<=,>=,==,===,!=,!==)、逻辑运算符(||,&&,!)、条件运算(?:)、位
- 国内顶级代码分享网站
袁潇含
javajdkoracle.netPHP
现在国内很多开源网站感觉都是为了利益而做的
当然利益是肯定的,否则谁也不会免费的去做网站
&
- Elasticsearch、MongoDB和Hadoop比较
随意而生
mongodbhadoop搜索引擎
IT界在过去几年中出现了一个有趣的现象。很多新的技术出现并立即拥抱了“大数据”。稍微老一点的技术也会将大数据添进自己的特性,避免落大部队太远,我们看到了不同技术之间的边际的模糊化。假如你有诸如Elasticsearch或者Solr这样的搜索引擎,它们存储着JSON文档,MongoDB存着JSON文档,或者一堆JSON文档存放在一个Hadoop集群的HDFS中。你可以使用这三种配
- mac os 系统科研软件总结
张亚雄
mac os
1.1 Microsoft Office for Mac 2011
大客户版,自行搜索。
1.2 Latex (MacTex):
系统环境:https://tug.org/mactex/
&nb
- Maven实战(四)生命周期
AdyZhang
maven
1. 三套生命周期 Maven拥有三套相互独立的生命周期,它们分别为clean,default和site。 每个生命周期包含一些阶段,这些阶段是有顺序的,并且后面的阶段依赖于前面的阶段,用户和Maven最直接的交互方式就是调用这些生命周期阶段。 以clean生命周期为例,它包含的阶段有pre-clean, clean 和 post
- Linux下Jenkins迁移
aijuans
Jenkins
1. 将Jenkins程序目录copy过去 源程序在/export/data/tomcatRoot/ofctest-jenkins.jd.com下面 tar -cvzf jenkins.tar.gz ofctest-jenkins.jd.com &
- request.getInputStream()只能获取一次的问题
ayaoxinchao
requestInputstream
问题:在使用HTTP协议实现应用间接口通信时,服务端读取客户端请求过来的数据,会用到request.getInputStream(),第一次读取的时候可以读取到数据,但是接下来的读取操作都读取不到数据
原因: 1. 一个InputStream对象在被读取完成后,将无法被再次读取,始终返回-1; 2. InputStream并没有实现reset方法(可以重
- 数据库SQL优化大总结之 百万级数据库优化方案
BigBird2012
SQL优化
网上关于SQL优化的教程很多,但是比较杂乱。近日有空整理了一下,写出来跟大家分享一下,其中有错误和不足的地方,还请大家纠正补充。
这篇文章我花费了大量的时间查找资料、修改、排版,希望大家阅读之后,感觉好的话推荐给更多的人,让更多的人看到、纠正以及补充。
1.对查询进行优化,要尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。
2.应尽量避免在 where
- jsonObject的使用
bijian1013
javajson
在项目中难免会用java处理json格式的数据,因此封装了一个JSONUtil工具类。
JSONUtil.java
package com.bijian.json.study;
import java.util.ArrayList;
import java.util.Date;
import java.util.HashMap;
- [Zookeeper学习笔记之六]Zookeeper源代码分析之Zookeeper.WatchRegistration
bit1129
zookeeper
Zookeeper类是Zookeeper提供给用户访问Zookeeper service的主要API,它包含了如下几个内部类
首先分析它的内部类,从WatchRegistration开始,为指定的znode path注册一个Watcher,
/**
* Register a watcher for a particular p
- 【Scala十三】Scala核心七:部分应用函数
bit1129
scala
何为部分应用函数?
Partially applied function: A function that’s used in an expression and that misses some of its arguments.For instance, if function f has type Int => Int => Int, then f and f(1) are p
- Tomcat Error listenerStart 终极大法
ronin47
tomcat
Tomcat报的错太含糊了,什么错都没报出来,只提示了Error listenerStart。为了调试,我们要获得更详细的日志。可以在WEB-INF/classes目录下新建一个文件叫logging.properties,内容如下
Java代码
handlers = org.apache.juli.FileHandler, java.util.logging.ConsoleHa
- 不用加减符号实现加减法
BrokenDreams
实现
今天有群友发了一个问题,要求不用加减符号(包括负号)来实现加减法。
分析一下,先看最简单的情况,假设1+1,按二进制算的话结果是10,可以看到从右往左的第一位变为0,第二位由于进位变为1。
 
- 读《研磨设计模式》-代码笔记-状态模式-State
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
当一个对象的内在状态改变时允许改变其行为,这个对象看起来像是改变了其类
状态模式主要解决的是当控制一个对象状态的条件表达式过于复杂时的情况
把状态的判断逻辑转移到表示不同状态的一系列类中,可以把复杂的判断逻辑简化
如果在
- CUDA程序block和thread超出硬件允许值时的异常
cherishLC
CUDA
调用CUDA的核函数时指定block 和 thread大小,该大小可以是dim3类型的(三维数组),只用一维时可以是usigned int型的。
以下程序验证了当block或thread大小超出硬件允许值时会产生异常!!!GPU根本不会执行运算!!!
所以验证结果的正确性很重要!!!
在VS中创建CUDA项目会有一个模板,里面有更详细的状态验证。
以下程序在K5000GPU上跑的。
- 诡异的超长时间GC问题定位
chenchao051
jvmcmsGChbaseswap
HBase的GC策略采用PawNew+CMS, 这是大众化的配置,ParNew经常会出现停顿时间特别长的情况,有时候甚至长到令人发指的地步,例如请看如下日志:
2012-10-17T05:54:54.293+0800: 739594.224: [GC 739606.508: [ParNew: 996800K->110720K(996800K), 178.8826900 secs] 3700
- maven环境快速搭建
daizj
安装mavne环境配置
一 下载maven
安装maven之前,要先安装jdk及配置JAVA_HOME环境变量。这个安装和配置java环境不用多说。
maven下载地址:http://maven.apache.org/download.html,目前最新的是这个apache-maven-3.2.5-bin.zip,然后解压在任意位置,最好地址中不要带中文字符,这个做java 的都知道,地址中出现中文会出现很多
- PHP网站安全,避免PHP网站受到攻击的方法
dcj3sjt126com
PHP
对于PHP网站安全主要存在这样几种攻击方式:1、命令注入(Command Injection)2、eval注入(Eval Injection)3、客户端脚本攻击(Script Insertion)4、跨网站脚本攻击(Cross Site Scripting, XSS)5、SQL注入攻击(SQL injection)6、跨网站请求伪造攻击(Cross Site Request Forgerie
- yii中给CGridView设置默认的排序根据时间倒序的方法
dcj3sjt126com
GridView
public function searchWithRelated() {
$criteria = new CDbCriteria;
$criteria->together = true; //without th
- Java集合对象和数组对象的转换
dyy_gusi
java集合
在开发中,我们经常需要将集合对象(List,Set)转换为数组对象,或者将数组对象转换为集合对象。Java提供了相互转换的工具,但是我们使用的时候需要注意,不能乱用滥用。
1、数组对象转换为集合对象
最暴力的方式是new一个集合对象,然后遍历数组,依次将数组中的元素放入到新的集合中,但是这样做显然过
- nginx同一主机部署多个应用
geeksun
nginx
近日有一需求,需要在一台主机上用nginx部署2个php应用,分别是wordpress和wiki,探索了半天,终于部署好了,下面把过程记录下来。
1. 在nginx下创建vhosts目录,用以放置vhost文件。
mkdir vhosts
2. 修改nginx.conf的配置, 在http节点增加下面内容设置,用来包含vhosts里的配置文件
#
- ubuntu添加admin权限的用户账号
hongtoushizi
ubuntuuseradd
ubuntu创建账号的方式通常用到两种:useradd 和adduser . 本人尝试了useradd方法,步骤如下:
1:useradd
使用useradd时,如果后面不加任何参数的话,如:sudo useradd sysadm 创建出来的用户将是默认的三无用户:无home directory ,无密码,无系统shell。
顾应该如下操作:
- 第五章 常用Lua开发库2-JSON库、编码转换、字符串处理
jinnianshilongnian
nginxlua
JSON库
在进行数据传输时JSON格式目前应用广泛,因此从Lua对象与JSON字符串之间相互转换是一个非常常见的功能;目前Lua也有几个JSON库,本人用过cjson、dkjson。其中cjson的语法严格(比如unicode \u0020\u7eaf),要求符合规范否则会解析失败(如\u002),而dkjson相对宽松,当然也可以通过修改cjson的源码来完成
- Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
yaerfeng1989
timerquartz定时器
原创整理不易,转载请注明出处:Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
代码下载地址:http://www.zuidaima.com/share/1772648445103104.htm
有两种流行Spring定时器配置:Java的Timer类和OpenSymphony的Quartz。
1.Java Timer定时
首先继承jav
- Linux下df与du两个命令的差别?
pda158
linux
一、df显示文件系统的使用情况,与du比較,就是更全盘化。 最经常使用的就是 df -T,显示文件系统的使用情况并显示文件系统的类型。 举比例如以下: [root@localhost ~]# df -T Filesystem Type &n
- [转]SQLite的工具类 ---- 通过反射把Cursor封装到VO对象
ctfzh
VOandroidsqlite反射Cursor
在写DAO层时,觉得从Cursor里一个一个的取出字段值再装到VO(值对象)里太麻烦了,就写了一个工具类,用到了反射,可以把查询记录的值装到对应的VO里,也可以生成该VO的List。
使用时需要注意:
考虑到Android的性能问题,VO没有使用Setter和Getter,而是直接用public的属性。
表中的字段名需要和VO的属性名一样,要是不一样就得在查询的SQL中
- 该学习笔记用到的Employee表
vipbooks
oraclesql工作
这是我在学习Oracle是用到的Employee表,在该笔记中用到的就是这张表,大家可以用它来学习和练习。
drop table Employee;
-- 员工信息表
create table Employee(
-- 员工编号
EmpNo number(3) primary key,
-- 姓