最短路径(Dijkstra)

迪杰斯特拉(Dijkstra)算法是典型最短路径算法,用于计算一个节点到其他节点的最短路径。 
它的主要特点是以起始点为中心向外层层扩展(广度优先搜索思想),直到扩展到终点为止

基本思想

  1. 通过Dijkstra计算图G中的最短路径时,需要指定起点s(即从顶点s开始计算)。

  2. 此外,引进两个集合S和U。S的作用是记录已求出最短路径的顶点(以及相应的最短路径长度),而U则是记录还未求出最短路径的顶点(以及该顶点到起点s的距离)。

  3. 初始时,S中只有起点s;U中是除s之外的顶点,并且U中顶点的路径是”起点s到该顶点的路径”。然后,从U中找出路径最短的顶点,并将其加入到S中;接着,更新U中的顶点和顶点对应的路径。 然后,再从U中找出路径最短的顶点,并将其加入到S中;接着,更新U中的顶点和顶点对应的路径。 … 重复该操作,直到遍历完所有顶点。

操作步骤

  1. 初始时,S只包含起点s;U包含除s外的其他顶点,且U中顶点的距离为”起点s到该顶点的距离”[例如,U中顶点v的距离为(s,v)的长度,然后s和v不相邻,则v的距离为∞]。

  2. 从U中选出”距离最短的顶点k”,并将顶点k加入到S中;同时,从U中移除顶点k。

  3. 更新U中各个顶点到起点s的距离。之所以更新U中顶点的距离,是由于上一步中确定了k是求出最短路径的顶点,从而可以利用k来更新其它顶点的距离;例如,(s,v)的距离可能大于(s,k)+(k,v)的距离。

  4. 重复步骤(2)和(3),直到遍历完所有顶点。

单纯的看上面的理论可能比较难以理解,下面通过实例来对该算法进行说明。

图解

最短路径(Dijkstra)_第1张图片

以上图G4为例,来对迪杰斯特拉进行算法演示(以第4个顶点D为起点)。以下B节点中23应为13。

最短路径(Dijkstra)_第2张图片

初始状态:S是已计算出最短路径的顶点集合,U是未计算除最短路径的顶点的集合!

第1步:将顶点D加入到S中。 
此时,S={D(0)}, U={A(∞),B(∞),C(3),E(4),F(∞),G(∞)}。 注:C(3)表示C到起点D的距离是3。

第2步:将顶点C加入到S中。 
上一步操作之后,U中顶点C到起点D的距离最短;因此,将C加入到S中,同时更新U中顶点的距离。以顶点F为例,之前F到D的距离为∞;但是将C加入到S之后,F到D的距离为9=(F,C)+(C,D)。 
此时,S={D(0),C(3)}, U={A(∞),B(23),E(4),F(9),G(∞)}。

第3步:将顶点E加入到S中。 
上一步操作之后,U中顶点E到起点D的距离最短;因此,将E加入到S中,同时更新U中顶点的距离。还是以顶点F为例,之前F到D的距离为9;但是将E加入到S之后,F到D的距离为6=(F,E)+(E,D)。 
此时,S={D(0),C(3),E(4)}, U={A(∞),B(23),F(6),G(12)}。

第4步:将顶点F加入到S中。 
此时,S={D(0),C(3),E(4),F(6)}, U={A(22),B(13),G(12)}。

第5步:将顶点G加入到S中。 
此时,S={D(0),C(3),E(4),F(6),G(12)}, U={A(22),B(13)}。

第6步:将顶点B加入到S中。 
此时,S={D(0),C(3),E(4),F(6),G(12),B(13)}, U={A(22)}。

第7步:将顶点A加入到S中。 
此时,S={D(0),C(3),E(4),F(6),G(12),B(13),A(22)}。

此时,起点D到各个顶点的最短距离就计算出来了:A(22) B(13) C(3) D(0) E(4) F(6) G(12)。

 

例题

Problem Description

 给定一个带权无向图,求节点1到节点n的最短路径。

 

Input

 输入包含多组数据,格式如下。

第一行包括两个整数n m,代表节点个数和边的个数。(n<=100)

剩下m行每行3个正整数a b c,代表节点a和节点b之间有一条边,权值为c。

 

Output

 每组输出占一行,仅输出从1到n的最短路径权值。(保证最短路径存在)

 

Sample Input

3 2
1 2 1
1 3 1
1 0

Sample Output

1
0
#include 
using namespace std;
int map1[110][110];
int visit[110];
int dis[110];//记录顶点到其他点的距离
const int INF=0x3f3f3f3f;
int n,m;

void Dijkstra(int t){
    visit[t]=1;
    for(int i=1;i<=n;i++){//dis数组的初始化
        dis[i]=map1[t][i];
    }

    for(int i=0;idis[x]+map1[x][i]){
                dis[i]=dis[x]+map1[x][i];
            }
        }
    }

}

int main()
{
    while(cin>>n>>m){
        memset(visit,0,sizeof(visit));
        int a,b,c;
        //初始化map1
        for(int i=1;i<=n;i++){
            for(int j=1;j<=n;j++){
                if(j==i) map1[i][j]=0;
                else map1[i][j]=INF;
            }
        }
        //输入值
        while(m--){
            cin>>a>>b>>c;
            if(map1[a][b]>c){
                map1[a][b]=map1[b][a]=c;
            }
        }
        if(m==0) cout<<"0"<

 

你可能感兴趣的:(最短路径)