- 【深度学习实战】使用深度学习模型可视化工具——Netron在线可视化深度学习神经网络
量子-Alex
深度学习神经网络人工智能
一直以来,对于深度学习领域的开发者,可视化模型都是非常迫切的需求,今天主要介绍一款可视化工具——NetronNetron有三种使用方式:在线、本地安装、pip安装今天在这里只介绍在线使用这种方式。Netron有个官方的网站:Netron点击进去是这样的一个界面我们可以点击openmodel从本地选择一个预训练模型可以看到这里就显示出来了
- 【深度学习实战】行人检测追踪与双向流量计数系统【python源码+Pyqt5界面+数据集+训练代码】YOLOv8、ByteTrack、目标追踪、双向计数、行人检测追踪、过线计数
阿_旭
AI应用软件开发实战深度学习实战深度学习python行人检测行人追踪过线计数
《博主简介》小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。✌更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~感谢小伙伴们点赞、关注!《------往期经典推荐------》一、AI应用软件开发实战专栏【链接】项目名称项目名称1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】3.【手势识别系统开发】4.【人脸面部活体
- 自然语言处理系列六十一》分布式深度学习实战》TensorFlow深度学习框架
陈敬雷-充电了么-CEO兼CTO
人工智能算法python深度学习自然语言处理AIGCchatgptgpt-3gptai
注:此文章内容均节选自充电了么创始人,CEO兼CTO陈敬雷老师的新书《自然语言处理原理与实战》(人工智能科学与技术丛书)【陈敬雷编著】【清华大学出版社】文章目录自然语言处理系列六十一分布式深度学习实战》TensorFlow深度学习框架安装和部署过程总结自然语言处理系列六十一分布式深度学习实战》TensorFlow深度学习框架TensorFlow作为最流行的深度学习框架之一,表达了高层次的机器学习计
- PyTorch深度学习实战(26)—— PyTorch与Multi-GPU
shangjg3
PyTorch深度学习实战深度学习pytorch人工智能
当拥有多块GPU时,可以利用分布式计算(DistributedComputation)与并行计算(ParallelComputation)的方式加速网络的训练过程。在这里,分布式是指有多个GPU在多台服务器上,并行指一台服务器上的多个GPU。在工作环境中,使用这两种方式加速模型训练是非常重要的技能。本文将介绍PyTorch中分布式与并行的常见方法,读者需要注意这二者的区别,并关注它们在使用时的注意
- PyTorch深度学习实战(27)—— PyTorch分布式训练
shangjg3
PyTorch深度学习实战深度学习pytorch分布式python
本节将详细介绍如何进行神经网络的分布式训练。其中1.1将结合MPI介绍分布式训练的基本流程,1.2与1.3将分别介绍如何使用torch.distributed以及Horovod进行神经网络的分布式训练。1PyTorch分布式训练1.1使用MPI进行分布式训练下面讲解如何利用MPI进行PyTorch的分布式训练。这里主要介绍的是数据并行的分布式方法:每一块GPU都有同一个模型的副本,仅加载不同的数据
- 遗传算法与深度学习实战(1)——进化深度学习
盼小辉丶
遗传算法与深度学习实战深度学习人工智能遗传算法
遗传算法与深度学习实战(1)——进化深度学习0.前言1.进化深度学习1.1进化深度学习简介1.2进化计算简介2.进化深度学习应用场景3.深度学习优化3.1优化网络体系结构4.通过自动机器学习进行优化4.1自动机器学习简介4.2AutoML工具5.进化深度学习应用5.1模型选择:权重搜索5.2模型架构:架构优化5.3超参数调整/优化5.4验证和损失函数优化5.5增强拓扑的神经进化小结系列链接0.前言
- 遗传算法与深度学习实战(6)——DEAP框架初体验
盼小辉丶
遗传算法与深度学习实战深度学习DEAP遗传算法
遗传算法与深度学习实战(6)——DEAP框架初体验0.前言1.OneMax问题介绍2.遗传算法要素定义3.使用DEAP解决OneMax问题3.1遗传算法要素配置3.2遗传算法解的进化3.3运行结果3.4eaSimple函数小结系列链接0.前言我们已经了解了DEAP库中的重要数据结构和工具,为了快速掌握DEAP,本节中,我们将介绍DEAP框架下的遗传算法构建流程,并使用DEAP解决简单的OneMax
- 遗传算法与深度学习实战(7)——使用遗传算法解决N皇后问题
盼小辉丶
遗传算法与深度学习实战深度学习DEAP遗传算法
遗传算法与深度学习实战(7)——使用遗传算法解决N皇后问题0.前言1.N皇后问题2.解的表示3.遗传算法解决N皇后问题小结系列链接0.前言进化算法(EvolutionaryAlgorithm,EA)和遗传算法(GeneticAlgorithms,GA)已成功解决了许多复杂的设计和布局问题,部分原因是它们采用了受控随机元素的搜索。这通常使得使用EA或GA设计的系统能够超越我们的理解进行创新。在本节中
- 基于YOLOv8与ByteTrack的车辆行人多目标检测与追踪系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标追踪、运动物体追踪
阿_旭
深度学习实战AI应用软件开发实战计算机视觉python行人车辆追踪目标追踪YOLOv8深度学习
《博主简介》小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。✌更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~感谢小伙伴们点赞、关注!《------往期经典推荐------》一、AI应用软件开发实战专栏【链接】项目名称项目名称1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】3.【手势识别系统开发】4.【人脸面部活体
- 基于YOLOv8深度学习的100种中草药智能识别系统【python源码+Pyqt5界面+数据集+训练代码】目标检测、深度学习实战
阿_旭
深度学习实战AI应用软件开发实战计算机视觉深度学习pythonYOLOv8中草药识别深度学习实战
《博主简介》小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。✌更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~感谢小伙伴们点赞、关注!《------往期经典推荐------》一、AI应用软件开发实战专栏【链接】项目名称项目名称1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】3.【手势识别系统开发】4.【人脸面部活体
- 基于YOLOv8深度学习的智能车牌检测与识别系统【python源码+Pyqt5界面+数据集+训练代码】目标检测、深度学习实战
阿_旭
深度学习实战AI应用软件开发实战计算机视觉深度学习python车牌识别YOLOv8深度学习实战
《博主简介》小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。✌更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~感谢小伙伴们点赞、关注!《------往期经典推荐------》一、AI应用软件开发实战专栏【链接】项目名称项目名称1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】3.【手势识别系统开发】4.【人脸面部活体
- PyTorch深度学习实战(26)——多对象实例分割
盼小辉丶
深度学习pytorch人工智能
PyTorch深度学习实战(26)——多对象实例分割0.前言1.获取并准备数据2.使用Detectron2训练实例分割模型3.对新图像进行推断小结系列链接0.前言我们已经学习了多种图像分割算法,在本节中,我们将学习如何使用Detectron2平台以及Google开放图像数据集执行多对象实例分割任务。Detectron2是Facebook团队打造的人工智能框架,其中包括了高性能的对象检测算法实现,包
- 深度学习实战篇之 ( 十八) -- Pytorch之SeNet
fengyuxie
深度学习pytorch人工智能python机器学习
科普知识注意力机制(AttentionMechanism)源于对人类视觉的研究。在认知科学中,由于信息处理的瓶颈,人类会选择性地关注所有信息的一部分,同时忽略其他可见的信息。上述机制通常被称为注意力机制。人类视网膜不同的部位具有不同程度的信息处理能力,即敏锐度(Acuity),只有视网膜中央凹部位具有最强的敏锐度。为了合理利用有限的视觉信息处理资源,人类需要选择视觉区域中的特定部分,然后集中关注它
- PyTorch深度学习实战(23)——从零开始实现SSD目标检测
盼小辉丶
深度学习pytorch目标检测
PyTorch深度学习实战(23)——从零开始实现SSD目标检测0.前言1.SSD目标检测模型1.1SSD网络架构1.2利用不同网络层执行边界框和类别预测1.3不同网络层中默认框的尺寸和宽高比1.4数据准备1.5模型训练2.实现SSD目标检测2.1SSD300架构2.2MultiBoxLoss2.训练SSD小结系列链接0.前言SSD(SingleShotMultiBoxDetector)是一种基于
- 深度学习实战 | 卷积神经网络LeNet手写数字识别(带手写板GUI界面)
两只程序猿
深度学习实战深度学习cnn人工智能
引言在深度学习领域,卷积神经网络(ConvolutionalNeuralNetwork,CNN)是一种广泛应用于图像识别任务的神经网络结构。LeNet是一种经典的CNN结构,被广泛应用于基础的图像分类任务。本文将介绍如何使用LeNet卷积神经网络实现手写数字识别,并使用Pytorch实现LeNet手写数字识别,使用PyQt5实现手写板GUI界面,使用户能够通过手写板输入数字并进行识别。完整代码下载
- PyTorch深度学习实战(34)——Pix2Pix详解与实现
盼小辉丶
深度学习pytorch人工智能
PyTorch深度学习实战(34)——Pix2Pix详解与实现0.前言1.模型与数据集1.1Pix2Pix基本原理1.2数据集分析1.3模型构建策略2.实现Pix2Pix生成图像小结系列链接0.前言Pix2Pix是基于生成对抗网络(ConvolutionalGenerativeAdversarialNetworks,GAN)的图像转换框架,能够将输入图像转换为与之对应的输出图像,能够广泛用于图像到
- Python 深度学习实战:聊天机器人
Python人工智能大数据
Python入门实战Java入门实战React入门实战大数据人工智能语言模型JavaPythonReact架构设计
1.背景介绍深度学习是人工智能领域的一个重要分支,它涉及到神经网络、机器学习、数据挖掘等多个领域知识。深度学习的核心思想是通过多层次的神经网络来进行数据的处理和分析,从而实现对复杂问题的解决。在现实生活中,深度学习已经广泛应用于各个领域,如图像识别、自然语言处理、语音识别等。而聊天机器人则是自然语言处理的一个重要应用之一,它可以通过深度学习技术来实现对用户输入的文本进行理解和回复。本文将从以下几个
- 基于YOLOv8深度学习的水稻叶片病害智能诊断系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战
阿_旭
深度学习实战AI应用软件开发实战计算机视觉深度学习pythonYOLOv8水稻病害检测深度学习实战
《博主简介》小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。✌更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~感谢小伙伴们点赞、关注!《------往期经典推荐------》一、AI应用软件开发实战专栏【链接】项目名称项目名称1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】3.【手势识别系统开发】4.【人脸面部活体
- 深度学习实战70-数学教材智能问答MathGPT模型与题目latex的pdf生成技术
微学AI
深度学习实战(进阶)深度学习pdf人工智能mathgptGPT
大家好,我是微学AI,今天给大家介绍一下深度学习实战70-数学教材智能问答MathGPT模型与题目latex的pdf生成技术,本文利用MathGPT数学大模型实现的数学教材智能问答系统。该系统结合了自然语言处理和数学知识图谱,能够理解用户的数学问题,并提供准确的答案和解析,随时随地请老师24小时在线回答学生的问题,以最低成本把老师请回家。此外,MathGPT还具备将问题和答案自动转化为LaTeX格
- PyTorch深度学习实战(32)——DCGAN详解与实现
盼小辉丶
深度学习pytorchAIGC
PyTorch深度学习实战(32)——DCGAN详解与实现0.前言1.模型与数据集分析1.1模型分析1.2数据集介绍2.构建DCGAN生成人脸图像小结系列链接0.前言DCGAN(DeepConvolutionalGenerativeAdversarialNetworks)是基于生成对抗网络(ConvolutionalGenerativeAdversarialNetworks,GAN)的深度学习模型
- PyTorch深度学习实战(33)——条件生成对抗网络(Conditional Generative Adversarial Network, CGAN)
盼小辉丶
深度学习pytorch生成对抗网络
PyTorch深度学习实战(33)——条件生成对抗网络0.前言1.条件生成对抗网络1.1模型介绍1.2模型与数据集分析2.实现条件生成对抗网络小结系列链接0.前言条件生成对抗网络(ConditionalGenerativeAdversarialNetwork,CGAN)是一种生成对抗网络(GenerativeAdversarialNetwork,GAN),旨在通过给定特定条件信息的情况下生成符合条
- PyTorch深度学习实战(31)——生成对抗网络(Generative Adversarial Network, GAN)
盼小辉丶
深度学习pytorch生成对抗网络
PyTorch深度学习实战(31)——生成对抗网络0.前言1.GAN2.GAN模型分析3.利用GAN模型生成手写数字小结系列链接0.前言生成对抗网络(GenerativeAdversarialNetworks,GAN)是一种由两个相互竞争的神经网络组成的深度学习模型,它由一个生成网络和一个判别网络组成,通过彼此之间的博弈来提高生成网络的性能。生成对抗网络使用神经网络生成与原始图像集非常相似的新图像
- 基于YOLOv8深度学习的100种蝴蝶智能识别系统【python源码+Pyqt5界面+数据集+训练代码】目标检测、深度学习实战
阿_旭
计算机视觉深度学习实战AI应用软件开发实战深度学习python蝴蝶识别YOLOv8深度学习实战
《博主简介》小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。✌更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~感谢小伙伴们点赞、关注!《------往期经典推荐------》一、AI应用软件开发实战专栏【链接】项目名称项目名称1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】3.【手势识别系统开发】4.【人脸面部活体
- 基于YOLOv8深度学习的102种花卉智能识别系统【python源码+Pyqt5界面+数据集+训练代码】目标检测、深度学习实战
阿_旭
深度学习实战AI应用软件开发实战计算机视觉深度学习python花卉识别YOLOv8深度学习实战
《博主简介》小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。✌更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~感谢小伙伴们点赞、关注!《------往期经典推荐------》一、AI应用软件开发实战专栏【链接】项目名称项目名称1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】3.【手势识别系统开发】4.【人脸面部活体
- 基于YOLOv8深度学习的葡萄簇目标检测系统【python源码+Pyqt5界面+数据集+训练代码】目标检测、深度学习实战
阿_旭
AI应用软件开发实战计算机视觉深度学习实战深度学习目标检测YOLOv8深度学习实战葡萄簇检测
《博主简介》小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。✌更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~感谢小伙伴们点赞、关注!《------往期经典推荐------》一、AI应用软件开发实战专栏【链接】项目名称项目名称1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】3.【手势识别系统开发】4.【人脸面部活体
- 基于YOLOv8深度学习的苹果叶片病害智能诊断系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战
阿_旭
AI应用软件开发实战计算机视觉深度学习实战深度学习pythonYOLOv8苹果病害检测深度学习实战
《博主简介》小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。✌更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~感谢小伙伴们点赞、关注!《------往期经典推荐------》一、AI应用软件开发实战专栏【链接】项目名称项目名称1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】3.【手势识别系统开发】4.【人脸面部活体
- 基于YOLOv8深度学习的智能肺炎诊断系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战
阿_旭
深度学习实战AI应用软件开发实战计算机视觉深度学习python肺炎诊断YOLOv8深度学习实战
《博主简介》小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。✌更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~感谢小伙伴们点赞、关注!《------往期经典推荐------》一、AI应用软件开发实战专栏【链接】项目名称项目名称1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】3.【手势识别系统开发】4.【人脸面部活体
- PyTorch深度学习实战(29)——神经风格迁移
盼小辉丶
深度学习pytorchAIGC
PyTorch深度学习实战(29)——神经风格迁移0.前言1.神经风格迁移原理1.1模型介绍1.2GramMatrix的重要性2.神经风格迁移模型构建策略3.使用Keras实现神经风格迁移小结系列链接0.前言神经风格迁移(NeuralStyleTransfer)是一种基于深度学习的技术,用于将两个不同图像的风格进行合成,生成新的图像。它通过将一个参考图像的风格应用于另一个内容图像,以创造出独特而富
- PyTorch深度学习实战(28)——对抗攻击(Adversarial Attack)
盼小辉丶
深度学习pytorch人工智能
PyTorch深度学习实战(28)——对抗攻击0.前言1.对抗攻击2.对抗攻击模型分析3.使用PyTorch实现对抗攻击小结系列链接0.前言近年来,深度学习在图像分类、目标检测、图像分割等诸多领域取得了突破性进展,深度学习模型已经能够以接近甚至超越人类水平的完成某些特定任务。但最近的研究表明,深度学习模型容易受到输入数据中细微扰动的影响,从而导致模型输出错误的预测。在图像领域,此类扰动通常很小对于
- PyTorch深度学习实战(30)——Deepfakes
盼小辉丶
深度学习pytorch人工智能
PyTorch深度学习实战(30)——Deepfakes0.前言1.Deepfakes原理2.数据集分析3.使用PyTorch实现Deepfakes3.1random_warp.py3.2Deepfakes.py小结系列链接0.前言Deepfakes是一种利用深度学习技术生成伪造视频和图像的技术。它通过将一个人的脸部特征或动作应用于另一个人的图像或视频中,以产生逼真的虚假内容。Deepfakes技
- rust的指针作为函数返回值是直接传递,还是先销毁后创建?
wudixiaotie
返回值
这是我自己想到的问题,结果去知呼提问,还没等别人回答, 我自己就想到方法实验了。。
fn main() {
let mut a = 34;
println!("a's addr:{:p}", &a);
let p = &mut a;
println!("p's addr:{:p}", &a
- java编程思想 -- 数据的初始化
百合不是茶
java数据的初始化
1.使用构造器确保数据初始化
/*
*在ReckInitDemo类中创建Reck的对象
*/
public class ReckInitDemo {
public static void main(String[] args) {
//创建Reck对象
new Reck();
}
}
- [航天与宇宙]为什么发射和回收航天器有档期
comsci
地球的大气层中有一个时空屏蔽层,这个层次会不定时的出现,如果该时空屏蔽层出现,那么将导致外层空间进入的任何物体被摧毁,而从地面发射到太空的飞船也将被摧毁...
所以,航天发射和飞船回收都需要等待这个时空屏蔽层消失之后,再进行
&
- linux下批量替换文件内容
商人shang
linux替换
1、网络上现成的资料
格式: sed -i "s/查找字段/替换字段/g" `grep 查找字段 -rl 路径`
linux sed 批量替换多个文件中的字符串
sed -i "s/oldstring/newstring/g" `grep oldstring -rl yourdir`
例如:替换/home下所有文件中的www.admi
- 网页在线天气预报
oloz
天气预报
网页在线调用天气预报
<%@ page language="java" contentType="text/html; charset=utf-8"
pageEncoding="utf-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transit
- SpringMVC和Struts2比较
杨白白
springMVC
1. 入口
spring mvc的入口是servlet,而struts2是filter(这里要指出,filter和servlet是不同的。以前认为filter是servlet的一种特殊),这样就导致了二者的机制不同,这里就牵涉到servlet和filter的区别了。
参见:http://blog.csdn.net/zs15932616453/article/details/8832343
2
- refuse copy, lazy girl!
小桔子
copy
妹妹坐船头啊啊啊啊!都打算一点点琢磨呢。文字编辑也写了基本功能了。。今天查资料,结果查到了人家写得完完整整的。我清楚的认识到:
1.那是我自己觉得写不出的高度
2.如果直接拿来用,很快就能解决问题
3.然后就是抄咩~~
4.肿么可以这样子,都不想写了今儿个,留着作参考吧!拒绝大抄特抄,慢慢一点点写!
- apache与php整合
aichenglong
php apache web
一 apache web服务器
1 apeche web服务器的安装
1)下载Apache web服务器
2)配置域名(如果需要使用要在DNS上注册)
3)测试安装访问http://localhost/验证是否安装成功
2 apache管理
1)service.msc进行图形化管理
2)命令管理,配
- Maven常用内置变量
AILIKES
maven
Built-in properties
${basedir} represents the directory containing pom.xml
${version} equivalent to ${project.version} (deprecated: ${pom.version})
Pom/Project properties
Al
- java的类和对象
百合不是茶
JAVA面向对象 类 对象
java中的类:
java是面向对象的语言,解决问题的核心就是将问题看成是一个类,使用类来解决
java使用 class 类名 来创建类 ,在Java中类名要求和构造方法,Java的文件名是一样的
创建一个A类:
class A{
}
java中的类:将某两个事物有联系的属性包装在一个类中,再通
- JS控制页面输入框为只读
bijian1013
JavaScript
在WEB应用开发当中,增、删除、改、查功能必不可少,为了减少以后维护的工作量,我们一般都只做一份页面,通过传入的参数控制其是新增、修改或者查看。而修改时需将待修改的信息从后台取到并显示出来,实际上就是查看的过程,唯一的区别是修改时,页面上所有的信息能修改,而查看页面上的信息不能修改。因此完全可以将其合并,但通过前端JS将查看页面的所有信息控制为只读,在信息量非常大时,就比较麻烦。
- AngularJS与服务器交互
bijian1013
JavaScriptAngularJS$http
对于AJAX应用(使用XMLHttpRequests)来说,向服务器发起请求的传统方式是:获取一个XMLHttpRequest对象的引用、发起请求、读取响应、检查状态码,最后处理服务端的响应。整个过程示例如下:
var xmlhttp = new XMLHttpRequest();
xmlhttp.onreadystatechange
- [Maven学习笔记八]Maven常用插件应用
bit1129
maven
常用插件及其用法位于:http://maven.apache.org/plugins/
1. Jetty server plugin
2. Dependency copy plugin
3. Surefire Test plugin
4. Uber jar plugin
1. Jetty Pl
- 【Hive六】Hive用户自定义函数(UDF)
bit1129
自定义函数
1. 什么是Hive UDF
Hive是基于Hadoop中的MapReduce,提供HQL查询的数据仓库。Hive是一个很开放的系统,很多内容都支持用户定制,包括:
文件格式:Text File,Sequence File
内存中的数据格式: Java Integer/String, Hadoop IntWritable/Text
用户提供的 map/reduce 脚本:不管什么
- 杀掉nginx进程后丢失nginx.pid,如何重新启动nginx
ronin47
nginx 重启 pid丢失
nginx进程被意外关闭,使用nginx -s reload重启时报如下错误:nginx: [error] open() “/var/run/nginx.pid” failed (2: No such file or directory)这是因为nginx进程被杀死后pid丢失了,下一次再开启nginx -s reload时无法启动解决办法:nginx -s reload 只是用来告诉运行中的ng
- UI设计中我们为什么需要设计动效
brotherlamp
UIui教程ui视频ui资料ui自学
随着国际大品牌苹果和谷歌的引领,最近越来越多的国内公司开始关注动效设计了,越来越多的团队已经意识到动效在产品用户体验中的重要性了,更多的UI设计师们也开始投身动效设计领域。
但是说到底,我们到底为什么需要动效设计?或者说我们到底需要什么样的动效?做动效设计也有段时间了,于是尝试用一些案例,从产品本身出发来说说我所思考的动效设计。
一、加强体验舒适度
嗯,就是让用户更加爽更加爽的用你的产品。
- Spring中JdbcDaoSupport的DataSource注入问题
bylijinnan
javaspring
参考以下两篇文章:
http://www.mkyong.com/spring/spring-jdbctemplate-jdbcdaosupport-examples/
http://stackoverflow.com/questions/4762229/spring-ldap-invoking-setter-methods-in-beans-configuration
Sprin
- 数据库连接池的工作原理
chicony
数据库连接池
随着信息技术的高速发展与广泛应用,数据库技术在信息技术领域中的位置越来越重要,尤其是网络应用和电子商务的迅速发展,都需要数据库技术支持动 态Web站点的运行,而传统的开发模式是:首先在主程序(如Servlet、Beans)中建立数据库连接;然后进行SQL操作,对数据库中的对象进行查 询、修改和删除等操作;最后断开数据库连接。使用这种开发模式,对
- java 关键字
CrazyMizzz
java
关键字是事先定义的,有特别意义的标识符,有时又叫保留字。对于保留字,用户只能按照系统规定的方式使用,不能自行定义。
Java中的关键字按功能主要可以分为以下几类:
(1)访问修饰符
public,private,protected
p
- Hive中的排序语法
daizj
排序hiveorder byDISTRIBUTE BYsort by
Hive中的排序语法 2014.06.22 ORDER BY
hive中的ORDER BY语句和关系数据库中的sql语法相似。他会对查询结果做全局排序,这意味着所有的数据会传送到一个Reduce任务上,这样会导致在大数量的情况下,花费大量时间。
与数据库中 ORDER BY 的区别在于在hive.mapred.mode = strict模式下,必须指定 limit 否则执行会报错。
- 单态设计模式
dcj3sjt126com
设计模式
单例模式(Singleton)用于为一个类生成一个唯一的对象。最常用的地方是数据库连接。 使用单例模式生成一个对象后,该对象可以被其它众多对象所使用。
<?phpclass Example{ // 保存类实例在此属性中 private static&
- svn locked
dcj3sjt126com
Lock
post-commit hook failed (exit code 1) with output:
svn: E155004: Working copy 'D:\xx\xxx' locked
svn: E200031: sqlite: attempt to write a readonly database
svn: E200031: sqlite: attempt to write a
- ARM寄存器学习
e200702084
数据结构C++cC#F#
无论是学习哪一种处理器,首先需要明确的就是这种处理器的寄存器以及工作模式。
ARM有37个寄存器,其中31个通用寄存器,6个状态寄存器。
1、不分组寄存器(R0-R7)
不分组也就是说说,在所有的处理器模式下指的都时同一物理寄存器。在异常中断造成处理器模式切换时,由于不同的处理器模式使用一个名字相同的物理寄存器,就是
- 常用编码资料
gengzg
编码
List<UserInfo> list=GetUserS.GetUserList(11);
String json=JSON.toJSONString(list);
HashMap<Object,Object> hs=new HashMap<Object, Object>();
for(int i=0;i<10;i++)
{
- 进程 vs. 线程
hongtoushizi
线程linux进程
我们介绍了多进程和多线程,这是实现多任务最常用的两种方式。现在,我们来讨论一下这两种方式的优缺点。
首先,要实现多任务,通常我们会设计Master-Worker模式,Master负责分配任务,Worker负责执行任务,因此,多任务环境下,通常是一个Master,多个Worker。
如果用多进程实现Master-Worker,主进程就是Master,其他进程就是Worker。
如果用多线程实现
- Linux定时Job:crontab -e 与 /etc/crontab 的区别
Josh_Persistence
linuxcrontab
一、linux中的crotab中的指定的时间只有5个部分:* * * * *
分别表示:分钟,小时,日,月,星期,具体说来:
第一段 代表分钟 0—59
第二段 代表小时 0—23
第三段 代表日期 1—31
第四段 代表月份 1—12
第五段 代表星期几,0代表星期日 0—6
如:
*/1 * * * * 每分钟执行一次。
*
- KMP算法详解
hm4123660
数据结构C++算法字符串KMP
字符串模式匹配我们相信大家都有遇过,然而我们也习惯用简单匹配法(即Brute-Force算法),其基本思路就是一个个逐一对比下去,这也是我们大家熟知的方法,然而这种算法的效率并不高,但利于理解。
假设主串s="ababcabcacbab",模式串为t="
- 枚举类型的单例模式
zhb8015
单例模式
E.编写一个包含单个元素的枚举类型[极推荐]。代码如下:
public enum MaYun {himself; //定义一个枚举的元素,就代表MaYun的一个实例private String anotherField;MaYun() {//MaYun诞生要做的事情//这个方法也可以去掉。将构造时候需要做的事情放在instance赋值的时候:/** himself = MaYun() {*
- Kafka+Storm+HDFS
ssydxa219
storm
cd /myhome/usr/stormbin/storm nimbus &bin/storm supervisor &bin/storm ui &Kafka+Storm+HDFS整合实践kafka_2.9.2-0.8.1.1.tgzapache-storm-0.9.2-incubating.tar.gzKafka安装配置我们使用3台机器搭建Kafk
- Java获取本地服务器的IP
中华好儿孙
javaWeb获取服务器ip地址
System.out.println("getRequestURL:"+request.getRequestURL());
System.out.println("getLocalAddr:"+request.getLocalAddr());
System.out.println("getLocalPort:&quo