- AI大模型副业变现之路,有技术就有收入!
AI大模型-王哥
人工智能AI大模型大模型大模型学习大模型教程大模型入门
在当今时代,AI大模型的应用越来越广泛,利用这些技术开展副业赚钱已成为可能。以下是一份详细的指南,帮助你了解需要学习的内容以及如何操作。一、需要学习的内容基础知识储备(1)数学知识:线性代数、概率论与数理统计、微积分等,这些是理解AI算法的基础。(2)编程技能:掌握Python编程语言,因为Python在AI领域有丰富的库和框架支持。(3)机器学习原理:了解常见的机器学习算法,如线性回归、决策树、
- 2019-03-20记录及学习计划更正
逆风飞翔的鸟
今天早晨早早的就坐上了返回学校的高铁,自己复习的进度稍慢了一些,不过没关系,这几天再追回来,最近发现虽然自己数学的做题能力有所提升,但是熟练程度还差很多,所以接下来高等数学要多做题,线性代数基础已经复习完毕,不能丢下,每天要做一定量的练习来保持住自己的水平。概率论与数理统计自己感觉有些困难,需要从课本开始认真的复习。关于英语我已经用百词斩背了有400左右的单词了,但是不是很扎实,所以自己要提升自己
- 【个人学习笔记】概率论与数理统计知识梳理【五】
已经是全速前进了
概率论
文章目录第五章、大数定律及中心极限定理一、大数定律1.1基本概念1.2弱大数定理二、中心极限定理独立同分布的中心极限定理定理总结第五章、大数定律及中心极限定理写博客比想象中费劲得多,公式得敲好久,所以只得随缘更更了,想写一些机器学习相关的东西,但是强迫症又不允许我把这个扔掉不管,我太难了Orz这一节的内容比较深,即使我是一个喜欢数学的工科生,也没有精力再去深究了,各式各样的大数定律及中心极限定理我
- 概率论与数理统计实验 附源码及实验报告 可打包为exe
货又星
概率论经验分享笔记python开源
Hi,I’m@货又星I’minterestedin…I’mcurrentlylearning…I’mlookingtocollaborateon…Howtoreachme…README目录(持续更新中)各种错误处理、爬虫实战及模板、百度智能云人脸识别、计算机视觉深度学习CNN图像识别与分类、PaddlePaddle自然语言处理知识图谱、GitHub、运维…WeChat:1297767084GitH
- 概率论与数理统计——二、随机变量及其分布
米妮爱分享
1随机变量随机变量是把样本S映射到R(实值单值)函数随机变量的引入可以来描述各种随机现象,并能利用数学分析的方法对随机实验的结果进行深入广泛的研究和讨论。2离散随机变量及其分布律(一)(0-1)分布(二)伯努力试验、二项分布(三)泊松分布3随机变量的分布函数计算分布函数时,根据其分布律,计算某一范围的概率时,左边x是小于不等于x的,当等于时,拆开的等式在3.1中还需要加上等于此值的概率,见例子。4
- 如何快速入门深度学习
人生万事须自为,跬步江山即寥廓。
机器学习人工智能chatgpt
深度学习是人工智能领域的一个重要分支,它模拟人脑的神经网络结构,通过大量的数据训练模型,使计算机能够自动学习和理解数据。深度学习在图像识别、语音识别、自然语言处理等领域取得了显著的成果。如果你想快速入门深度学习,可以按照以下步骤进行:1.学习基础知识在学习深度学习之前,你需要具备一定的数学基础,包括线性代数、概率论与数理统计、微积分等。此外,你还需要掌握一门编程语言,如Python,因为大多数深度
- 概率论与数理统计 第八章 假设检验
Jarkata
课前导读统计推断的另一类重要问题是假设检验问题。参数估计的主要任务是找参数值等于多少,或在哪个范围内取值。而假设检验则主要是看参数的值是否等于某个特定的值。通常进行假设检验即选定一个假设,确定用以决策的拒绝域的形式,构造一个检验统计量,求出拒绝域或检验统计量的p值,查看结果是否落在拒绝域内或p值是否小于显著性水平,做出决策的一个过程。第一节检验的基本原理举个例子,体现假设检验的思想:假设检验的统计
- 考研计划 东南大学
风与易水
考研学习
考研计划2021考研自用,目前已经上岸东南大学,祝各位顺利!数一:高数、线代、概率论与数理统计使用参考资料:1.《同济高数、浙大概率论与数理统计》2.《李永乐基础强化系列材料》3.武忠祥教学视频4.李林8805.武老师的高数辅导讲义+李永乐线代讲义5.李林的1086.《李林冲刺6套卷,李林预测4套卷》复习策略:1.2月初~6月底第一轮打基础,以武忠祥2020视频【教材(查阅相关知识点)】为主,深刻
- 武忠祥2025高等数学,基础阶段的百度网盘+视频及PDF
m0_54050778
pdf概率论
考研数学武忠祥基础主要学习以下几个方面的内容:1.微积分:主要包括极限、连续、导数、积分等概念,以及它们的基本性质和运算方法。2.线性代数:主要包括向量、向量空间、线性方程组、矩阵、行列式、特征值和特征向量等概念,以及它们的基本性质和运算方法。3概率论与数理统计:主要包括随机事件和概率、条件概率、独立性、随机变量及其分布、数学期望方差和协方差、大数定律和中心极限定理等概念以及它们的基本性质和运算方
- 大二下 课程安排
三冬四夏会不会有点漫长
#大二下计划
专业选修web前端开发信息与网络安全必修数据库原理4概率论与数理统计4软件设计与体系结构3编译技术3软件设计实践2大学体育1选修(待更新)目标大二下一定要好好学习,不然最后总的排名真的就垫底了,大一上绩点专业排名33/139,大一下绩点专业排名91/139,大二上待更新,整个大一绩点专业排名71/139,希望大二下能尽自己的全力学,绩点考到尽可能高,把自己不太行的过往的成绩往上拉一拉
- 不知道几天能学完《概率论与数理统计》之1.1随机统计
不安全的安保
不知道几天能学完概率论概率论
引言确定性(必然):一定发生/一定不发生随机性(偶然):可能发生/不发生统计规律:对事情做出大量重复性的实验试图找出某种规律1.1.1随机事件与随机试验试验:为了找出实践规律,对客观事物进行观察、测量,然后进行科学实验等等这类统称为试验随机试验:使用E表示三个要求相同条件下可以重复实验结果不止一个无法预测哪个结果会出现举个例子:抛硬币随机抛硬币可以出现两次正面硬币有正面和反面在硬币落地之前无法得知
- 2024年高校建设大数据实验室建设的意义
泰迪智能科技
大数据实验室大数据
数据挖掘与大数据分析是以计算机基础为基础,以挖掘算法为核心,紧密面向行业应用的一门综合性学科。其主要技术涉及概率论与数理统计、数据挖掘、算法与数据结构、计算机网络、并行计算等多个专业方向,因此该学科对于实验室具有较高的专业要求。实验室不仅要提供基础的开发环境,还要提供大数据的运算环境以及用于实验的实战大数据案例。这些实验素材的准备均需专业的大数据实验室作为支撑。目前,在我国高校的专业设置上与数据挖
- 概率论与数理统计————3.随机变量及其分布
辣个骑士
概率论与数理统计概率论
一、随机变量设E是一个随机试验,S为样本空间,样本空间的任意样本点e可以通过特定的对应法则X,使得每个样本点都有与之对应的数对应,则称X=X(e)为随机变量二、分布函数分布函数:设X为随机变量,x是任意实数,则事件{Xx}为随机变量X的分布函数,记为F(x)即:F(x)=P(Xx)(1)几何意义:(2)某点处的概率:P(a)=P(Xa)-P(X0;F(x)=cx0三、离散型随机变量及其分布离散型随
- 概率论与数理统计————古典概型、几何概型和条件概率
辣个骑士
概率论与数理统计概率论
一、古典概型特点(1)有限性:试验S的样本空间的有限集合(2)等可能性:每个样本点发生的概率是相等的公式:P(A)=A为随机事件的样本点数;S是样本空间二、几何概型计算公式:p(A)=A的长度、面积或体积S的长度、面积或体积三、条件概率条件概率:设A、B为两个事件,且p(B)>0,则在事件B条件下事件A发生的概率为P(A|B)=p(|A)=1-P(B|A)乘法公式:事件的独立性:若事件A、B满足P
- 概率论与数理统计————1.随机事件与概率
辣个骑士
概率论与数理统计概率论
一、随机事件随机试验:满足三个特点(1)可重复性:可在相同的条件下重复进行(2)可预知性:每次试验的可能不止一个,事先知道试验的所有可能结果(3)不确定性:每次试验不能确定实验结果随机试验记作E样本空间:随机试验E的所有可能的结果构成的集合样本点:样本空间的每个元素是一个样本点随机事件:样本空间的子集为一个随机事件(事件放生:该事件的某个样本点出现)必然事件:必然发生的事件不可能事件:不可能发生的
- 不动点迭代c语言for循环,概率论与数理统计-西北师范大学数学与统计学院.PDF
Jezzy WANG
不动点迭代c语言for循环
概率论与数理统计-西北师范大学数学与统计学院数学与统计学院数学与应用数学专业云亭班专业平台必修课程教学大纲数学与统计学院数学与应用数学专业云亭班专业平台必修课程包括以下11门课程:概率论与数理统计、实变函数、泛函分析、拓扑学、微分几何、C语言、近世代数、运筹学、常微分方程、复变函数、大学物理。概率论与数理统计一、说明课程性质:该课程是数学与应用数学专业云亭班专业平台必修课程之一,第5学期开设。周4
- 概率论与数理统计-第7章 假设检验
Ciian
概率论与数理统计概率论
假设检验的基本概念二、假设检验的基本思想假设检验的基本思想实质上是带有某种概率性质的反证法,为了检验一个假设H0,是否正确,首先假定该假设H0正确,然后根据抽取到的样本对假设H0作出接受或拒绝的决策,如果样本观察值导致了不合理的现象发生,就应拒绝假设H0,否则应接受假设H0·三、假设检验的两类错误第一类错误当假设H0正确时,小概率事件也有可能发生,此时,我们会拒绝假设H0,因而犯了“弃真”的错误,
- 概率论与数理统计系列笔记之第六章——参数估计
欧阳妙妙
概率论
概率论与数理统计笔记(第六章——参数估计)对于统计专业来说,书本知识总有遗忘,翻看教材又太麻烦,于是打算记下笔记与自己的一些思考,主要参考用书是茆诗松老师编写的《概率论与数理统计教程》,其他知识待后续书籍补充。文章目录概率论与数理统计笔记(第六章——参数估计)6.1点估计的概念以及无偏性6.1.1点估计及无偏性6.1.2有效性6.2矩估计以及相合性6.2.1替换原理和矩法估计6.2.2概率函数已知
- 【概率论与数理统计】第二章知识点复习与习题
小萨摩!
期末考试概率论
思维导图笔记一、随机变量定义:设随机试验的样本空间为S={e},X=X(e)是定义在样本空间S上的实值单值函数。称X=X(e)为随机变量。类似于函数、映射的概念。既然类似于函数,就有定义域和至于,通过定义知道,定义域为样本空间,值域为实数集。即对随机事件数量化。二、离散型随机变量及其分布律1离散型随机变量定义:全部可能取到的值是有限个或可列无限多个的随机变量。这里有限一定可列,可列不一定有限。而分
- 张宇1000题概率论与数理统计 第九章 参数估计与假设检验
古月忻
#概率论张宇考研其他
目录AAA组6.设x1,x2,⋯ ,xnx_1,x_2,\cdots,x_nx1,x2,⋯,xn是来自总体X∼N(μ,σ2)X\simN(\mu,\sigma^2)X∼N(μ,σ2)(μ,σ2\mu,\sigma^2μ,σ2都未知)的简单随机样本的观测值,则σ2\sigma^2σ2的最大似然估计值为( )。(A)1n∑i=1n(xi−μ)2;(A)\cfrac{1}{n}\displaystyl
- 概率论与数理统计 Chapter4. 参数估计
Espresso Macchiato
基础数学概率论参数估计极大似然估计矩估计区间估计
概率论与数理统计Chapter4.参数估计1.基础概念1.总体2.样品3.统计量1.样本方差2.k阶原点矩3.k阶中心矩2.参数的点估计1.矩估计1.正态分布2.指数分布3.均匀分布4.二项分布5.泊松分布2.极大似然估计1.正态分布2.指数分布3.二项分布4.均匀分布5.泊松分布3.贝叶斯估计3.点估计的优良性准则1.无偏性1.均值2.方差3.标准差2.最小方差无偏估计3.相合性4.区间估计1.
- 概率论与数理统计浙大第五版 第七章 部分习题+R代码
⑨充满智慧与力量⑨
概率论
习题七1、μ1=E(X)=μ=1n∑i=1nxi=18(74.001+74.005+74.003+74.001+74.000+73.998+74.006+74.002)=74.002\mu_1=E(X)=\mu\\=\frac{1}{n}\sum_{i=1}^nx_i\\=\frac{1}{8}(74.001+74.005+74.003+74.001+74.000+73.998+74.006+74
- 概率论与数理统计-第6章 参数估计
Ciian
概率论与数理统计概率论
6.1点估计问题概述一、点估计的概念二、评价估计量的标准无偏性定义1:设^θ(X1,…,Xn)是未知参数θ的估计量,若E(^θ)=θ,则称^θ为θ的无偏估计量定理1:设X1,…,Xn,为取自总体X的样本,总体X的均值为μ,方差为σ2,则(I)样本均值¯X是μ的无偏估计量;(2)样本方差S2是σ2的无偏估计量;&1有效性无偏性是有效性的前提。定义2:例题:*1相合性(一致性)我们不仅希望一个估计量是
- 最小描述长度MDL(Minimum Description Length)及信息论介绍
Avasla
机器学习算法概率论
信息论介绍信息论是应用数学的一个分支,主要研究的是对一个信号包含信息的多少进行量化。它最初被发明是用来研究在一个含有噪声的信道上用离散的字母表来发送消息,例如通过无线电传输来通信。在这种情况下,信息论告诉我们如何对消息设计最有编码以及计算消息的期望长度,这些消息是使用多种不同编码机制、从特斯能够的概率分布上采样得到的。百度百科的解释是:信息论是运用概率论与数理统计的方法研究信息、信息熵、通信系统、
- 概率论与数理统计(期末复习)
蓝桉802
概率论
第四章数学期望与方差1.期望的性质:E(C)=C;E(X+C)=E(X)+C;E(CX)=CE(X);E(kX+C)=kE(X)+C;E(X+Y)=E(X)+E(Y);E(X-Y)=E(X-Y);;X与Y独立:E(XY)=E(X)E(Y);2.方差的性质:D(X)=E(X^2)-[E(X)]^2D(C)=0;D(X+C)=D(X);D(CX)=C^2D(X);D(kX+C)=k^2D(X);X与Y
- 概率论与数理统计 知识点+课后习题
兑生
大学课程概率论
文章目录[学习资源整合](https://www.cnblogs.com/duisheng/p/17872980.html)总复习知识点⭐常用分布的数学期望和方差选择题填空题大题1.概率2.概率3.概率4.P5.概率6.概率密度函数F(X)F(X)F(X)7.分布列求方差V(X)V(X)V(X)8.求分布函数F(X)F(X)F(X)9.求F(X)F(X)F(X)和P(X)P(X)P(X)10.求未
- AI技术体系和领域浅总结
TisUs
数学基础微积分《高等数学》线性代数《线性代数》概率统计《概率论与数理统计》信息论《信息论基础》(机械工业出版社)集合论和图论《离散数学》博弈论《博弈论》(中国人民大学出版社)张量分析现代几何计算机基础计算机原理程序设计语言操作系统分布式系统算法基础机器学习算法机器学习基础(估计方法特征工程)线性模型(线性回归)逻辑回归决策树模型(GBDT)支持向量机贝叶斯分类器神经网络(深度学习):MLPCNNR
- 概率论与数理统计基础知识
竹叶青lvye
程序员的数学概率论
计算机视觉一些算法中常会用到概论的一些知识,为了便于理解和快速回忆,博主这边对常用的一些知识点做下整理,主要来源于如下这本书籍。1.随机试验的每一可能结果称为一个基本事件,一个或一组基本事件统称随机事件,或简称事件。典型的随机试验有掷骰子、扔硬币、抽扑克牌以及轮盘游戏等。2.事件的概率是衡量该事件发生的可能性的量度。概率论(数学分支)_百度百科概率(统计学术语)_百度百科3.随机事件,是指的一个事
- 二月
goldfish2017
2018年已经过完一个月了,一月份完成了公司搬办公室,开年会中了个末等奖,修车的钱给保险公司也都给报销了,部门公司也彻底成为全资子公司,原来老板特意把年终奖提前给发了,手头能多少宽裕点了。如果考试成绩不理想,还是年后想办法谋求再回北京找工作,如果成绩还可以,就需要准备加试复试。一月份完成了概率论与数理统计的通读,看了两三遍课本和视频才大概了解,编译原理在年前完成通读教材一遍。减少同时关注事情的数量
- 极大似然估计定义及例题
脑子不好真君
数学概率论与数理统计极大似然估计
一、极大似然估计定义实际上就是说,我们在总体中抽取样本,我们希望在样本中发生的情况最大化,用在样本中发生的情况去估计总体中发生情况。二、例题注意:对分布函数求导得概率密度函数三、参考书目茆诗松,周纪芗等.概率论与数理统计(第三版).中国统计出版社,2007王松桂等.概率论与数理统计(第三版).科学出版社,2011同济大学数学系.概率论与数理统计.人民邮电出版社,2017
- 关于旗正规则引擎规则中的上传和下载问题
何必如此
文件下载压缩jsp文件上传
文件的上传下载都是数据流的输入输出,大致流程都是一样的。
一、文件打包下载
1.文件写入压缩包
string mainPath="D:\upload\"; 下载路径
string tmpfileName=jar.zip; &n
- 【Spark九十九】Spark Streaming的batch interval时间内的数据流转源码分析
bit1129
Stream
以如下代码为例(SocketInputDStream):
Spark Streaming从Socket读取数据的代码是在SocketReceiver的receive方法中,撇开异常情况不谈(Receiver有重连机制,restart方法,默认情况下在Receiver挂了之后,间隔两秒钟重新建立Socket连接),读取到的数据通过调用store(textRead)方法进行存储。数据
- spark master web ui 端口8080被占用解决方法
daizj
8080端口占用sparkmaster web ui
spark master web ui 默认端口为8080,当系统有其它程序也在使用该接口时,启动master时也不会报错,spark自己会改用其它端口,自动端口号加1,但为了可以控制到指定的端口,我们可以自行设置,修改方法:
1、cd SPARK_HOME/sbin
2、vi start-master.sh
3、定位到下面部分
- oracle_执行计划_谓词信息和数据获取
周凡杨
oracle执行计划
oracle_执行计划_谓词信息和数据获取(上)
一:简要说明
在查看执行计划的信息中,经常会看到两个谓词filter和access,它们的区别是什么,理解了这两个词对我们解读Oracle的执行计划信息会有所帮助。
简单说,执行计划如果显示是access,就表示这个谓词条件的值将会影响数据的访问路径(表还是索引),而filter表示谓词条件的值并不会影响数据访问路径,只起到
- spring中datasource配置
g21121
dataSource
datasource配置有很多种,我介绍的一种是采用c3p0的,它的百科地址是:
http://baike.baidu.com/view/920062.htm
<!-- spring加载资源文件 -->
<bean name="propertiesConfig"
class="org.springframework.b
- web报表工具FineReport使用中遇到的常见报错及解决办法(三)
老A不折腾
finereportFAQ报表软件
这里写点抛砖引玉,希望大家能把自己整理的问题及解决方法晾出来,Mark一下,利人利己。
出现问题先搜一下文档上有没有,再看看度娘有没有,再看看论坛有没有。有报错要看日志。下面简单罗列下常见的问题,大多文档上都有提到的。
1、repeated column width is largerthan paper width:
这个看这段话应该是很好理解的。比如做的模板页面宽度只能放
- mysql 用户管理
墙头上一根草
linuxmysqluser
1.新建用户 //登录MYSQL@>mysql -u root -p@>密码//创建用户mysql> insert into mysql.user(Host,User,Password) values(‘localhost’,'jeecn’,password(‘jeecn’));//刷新系统权限表mysql>flush privileges;这样就创建了一个名为:
- 关于使用Spring导致c3p0数据库死锁问题
aijuans
springSpring 入门Spring 实例Spring3Spring 教程
这个问题我实在是为整个 springsource 的员工蒙羞
如果大家使用 spring 控制事务,使用 Open Session In View 模式,
com.mchange.v2.resourcepool.TimeoutException: A client timed out while waiting to acquire a resource from com.mchange.
- 百度词库联想
annan211
百度
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>RunJS</title&g
- int数据与byte之间的相互转换实现代码
百合不是茶
位移int转bytebyte转int基本数据类型的实现
在BMP文件和文件压缩时需要用到的int与byte转换,现将理解的贴出来;
主要是要理解;位移等概念 http://baihe747.iteye.com/blog/2078029
int转byte;
byte转int;
/**
* 字节转成int,int转成字节
* @author Administrator
*
- 简单模拟实现数据库连接池
bijian1013
javathreadjava多线程简单模拟实现数据库连接池
简单模拟实现数据库连接池
实例1:
package com.bijian.thread;
public class DB {
//private static final int MAX_COUNT = 10;
private static final DB instance = new DB();
private int count = 0;
private i
- 一种基于Weblogic容器的鉴权设计
bijian1013
javaweblogic
服务器对请求的鉴权可以在请求头中加Authorization之类的key,将用户名、密码保存到此key对应的value中,当然对于用户名、密码这种高机密的信息,应该对其进行加砂加密等,最简单的方法如下:
String vuser_id = "weblogic";
String vuse
- 【RPC框架Hessian二】Hessian 对象序列化和反序列化
bit1129
hessian
任何一个对象从一个JVM传输到另一个JVM,都要经过序列化为二进制数据(或者字符串等其他格式,比如JSON),然后在反序列化为Java对象,这最后都是通过二进制的数据在不同的JVM之间传输(一般是通过Socket和二进制的数据传输),本文定义一个比较符合工作中。
1. 定义三个POJO
Person类
package com.tom.hes
- 【Hadoop十四】Hadoop提供的脚本的功能
bit1129
hadoop
1. hadoop-daemon.sh
1.1 启动HDFS
./hadoop-daemon.sh start namenode
./hadoop-daemon.sh start datanode
通过这种逐步启动的方式,比start-all.sh方式少了一个SecondaryNameNode进程,这不影响Hadoop的使用,其实在 Hadoop2.0中,SecondaryNa
- 中国互联网走在“灰度”上
ronin47
管理 灰度
中国互联网走在“灰度”上(转)
文/孕峰
第一次听说灰度这个词,是任正非说新型管理者所需要的素质。第二次听说是来自马化腾。似乎其他人包括马云也用不同的语言说过类似的意思。
灰度这个词所包含的意义和视野是广远的。要理解这个词,可能同样要用“灰度”的心态。灰度的反面,是规规矩矩,清清楚楚,泾渭分明,严谨条理,是决不妥协,不转弯,认死理。黑白分明不是灰度,像彩虹那样
- java-51-输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字。
bylijinnan
java
public class PrintMatrixClockwisely {
/**
* Q51.输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字。
例如:如果输入如下矩阵:
1 2 3 4
5 6 7 8
9
- mongoDB 用户管理
开窍的石头
mongoDB用户管理
1:添加用户
第一次设置用户需要进入admin数据库下设置超级用户(use admin)
db.addUsr({user:'useName',pwd:'111111',roles:[readWrite,dbAdmin]});
第一个参数用户的名字
第二个参数
- [游戏与生活]玩暗黑破坏神3的一些问题
comsci
生活
暗黑破坏神3是有史以来最让人激动的游戏。。。。但是有几个问题需要我们注意
玩这个游戏的时间,每天不要超过一个小时,且每次玩游戏最好在白天
结束游戏之后,最好在太阳下面来晒一下身上的暗黑气息,让自己恢复人的生气
&nb
- java 二维数组如何存入数据库
cuiyadll
java
using System;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using System.Xml;
using System.Xml.Serialization;
using System.IO;
namespace WindowsFormsApplication1
{
- 本地事务和全局事务Local Transaction and Global Transaction(JTA)
darrenzhu
javaspringlocalglobaltransaction
Configuring Spring and JTA without full Java EE
http://spring.io/blog/2011/08/15/configuring-spring-and-jta-without-full-java-ee/
Spring doc -Transaction Management
http://docs.spring.io/spri
- Linux命令之alias - 设置命令的别名,让 Linux 命令更简练
dcj3sjt126com
linuxalias
用途说明
设置命令的别名。在linux系统中如果命令太长又不符合用户的习惯,那么我们可以为它指定一个别名。虽然可以为命令建立“链接”解决长文件名的问 题,但对于带命令行参数的命令,链接就无能为力了。而指定别名则可以解决此类所有问题【1】。常用别名来简化ssh登录【见示例三】,使长命令变短,使常 用的长命令行变短,强制执行命令时询问等。
常用参数
格式:alias
格式:ali
- yii2 restful web服务[格式响应]
dcj3sjt126com
PHPyii2
响应格式
当处理一个 RESTful API 请求时, 一个应用程序通常需要如下步骤 来处理响应格式:
确定可能影响响应格式的各种因素, 例如媒介类型, 语言, 版本, 等等。 这个过程也被称为 content negotiation。
资源对象转换为数组, 如在 Resources 部分中所描述的。 通过 [[yii\rest\Serializer]]
- MongoDB索引调优(2)——[十]
eksliang
mongodbMongoDB索引优化
转载请出自出处:http://eksliang.iteye.com/blog/2178555 一、概述
上一篇文档中也说明了,MongoDB的索引几乎与关系型数据库的索引一模一样,优化关系型数据库的技巧通用适合MongoDB,所有这里只讲MongoDB需要注意的地方 二、索引内嵌文档
可以在嵌套文档的键上建立索引,方式与正常
- 当滑动到顶部和底部时,实现Item的分离效果的ListView
gundumw100
android
拉动ListView,Item之间的间距会变大,释放后恢复原样;
package cn.tangdada.tangbang.widget;
import android.annotation.TargetApi;
import android.content.Context;
import android.content.res.TypedArray;
import andr
- 程序员用HTML5制作的爱心树表白动画
ini
JavaScriptjqueryWebhtml5css
体验效果:http://keleyi.com/keleyi/phtml/html5/31.htmHTML代码如下:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"><head><meta charset="UTF-8" >
<ti
- 预装windows 8 系统GPT模式的ThinkPad T440改装64位 windows 7旗舰版
kakajw
ThinkPad预装改装windows 7windows 8
该教程具有普遍参考性,特别适用于联想的机器,其他品牌机器的处理过程也大同小异。
该教程是个人多次尝试和总结的结果,实用性强,推荐给需要的人!
缘由
小弟最近入手笔记本ThinkPad T440,但是特别不能习惯笔记本出厂预装的Windows 8系统,而且厂商自作聪明地预装了一堆没用的应用软件,消耗不少的系统资源(本本的内存为4G,系统启动完成时,物理内存占用比
- Nginx学习笔记
mcj8089
nginx
一、安装nginx 1、在nginx官方网站下载一个包,下载地址是:
http://nginx.org/download/nginx-1.4.2.tar.gz
2、WinSCP(ftp上传工
- mongodb 聚合查询每天论坛链接点击次数
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
/* 18 */
{
"_id" : ObjectId("5596414cbe4d73a327e50274"),
"msgType" : "text",
"sendTime" : ISODate("2015-07-03T08:01:16.000Z"
- java术语(PO/POJO/VO/BO/DAO/DTO)
Luob.
DAOPOJODTOpoVO BO
PO(persistant object) 持久对象
在o/r 映射的时候出现的概念,如果没有o/r映射,就没有这个概念存在了.通常对应数据模型(数据库),本身还有部分业务逻辑的处理.可以看成是与数据库中的表相映射的java对象.最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合.PO中应该不包含任何对数据库的操作.
VO(value object) 值对象
通
- 算法复杂度
Wuaner
Algorithm
Time Complexity & Big-O:
http://stackoverflow.com/questions/487258/plain-english-explanation-of-big-o
http://bigocheatsheet.com/
http://www.sitepoint.com/time-complexity-algorithms/