- Ubuntu: 配置OpenCV环境
达柳斯·绍达华·宁
ubuntuopencvlinux
从从Ubuntu系统安装opencv_ubuntu安装opencv-CSDN博客文章浏览阅读2.3k次,点赞4次,收藏14次。开源计算机视觉(OpenCV)是一个主要针对实时计算机视觉的编程函数库。OpenCV的应用领域包括:2D和3D功能工具包、运动估计、面部识别系统、手势识别、人机交互、移动机器人、动作理解、物体识别、分割和识别、实体影像立体视觉:来自两个摄像机的深度感知、运动跟踪、增强现实等
- 计算机视觉领域顶级会议和顶级期刊汇总
AdaCoding
论文阅读与写作计算机视觉人工智能
计算机视觉领域顶级会议和顶级期刊汇总一、计算机视觉顶会一档二档二、计算机视觉顶刊一、计算机视觉顶会一档1、ICCV,全称:IEEE/CVFInternationalConferenceonComputerVision国际计算机视觉会议,是公认的三个会议中级别最高的,收录率一般在20%左右,由IEEE主办。收录论文的内容:底层视觉与感知,颜色、光照与纹理处理,分割与聚合,运动与跟踪,立体视觉与运动结
- 立体视觉几何 (三)
dc爱傲雪和技术
计算机视觉数码相机人工智能
立体视觉系统概述误差分析考虑对应于深度Z的视差d的匹配对。我们想要评估ΔZ,即视差误差引起的深度误差。将Z对d求导,得到:立体视觉中基线(baseline)、焦距(focallength)和立体重建的准确性之间的基本关系。“深度:立体重建的分辨率随着深度呈二次减小。这意味着立体视觉的适用性受到严重限制。”-这句话指出,随着物体距离相机的深度增加,立体重建的分辨率会二次减小。这意味着在较远的距离上,
- 双目视觉测宽仪系列 模拟人眼高精测量!
蓝鹏测控
其他制造
双目视觉测宽仪系列基于机器视觉原理,两个工业相机就像人的双眼,可以形成立体视觉,这样就可以得到足够的信息判断被测物的距离,修正和消除距离变化对测量的影响,在线检测生产线上产品的宽度值。可广泛应用于轧制材料(热轧、冷轧)、机械部件、钢板、铁板、金属板、厚板等板材类产品的在线检测。具有非接触、实时测量、精度高等优点。技术参数:测量范围:500-3000mm(定制)测量方式:双工业相机,自发光/光源补光
- 科普类——进行基线设计、系统测试和优化的立体视觉软件与工具(七)
JANGHIGH
科普类无人驾驶自动驾驶
科普类——进行基线设计、系统测试和优化的立体视觉软件与工具(七)在立体视觉领域,有许多立体视觉软件和工具可以帮助工程师进行基线设计、系统测试和优化。以下是一些常用的立体视觉软件和工具:Meshroom:这是一个基于AliceVision摄影测量计算机视觉框架的免费开源三维重建软件。Meshroom可以处理大规模的图像数据集,进行立体视觉重建。OpenMVG(OpenMultipleViewGeom
- 三维重建开源函数库或者工具
冰清-小魔鱼
遥感GIS计算机视觉目标检测人工智能
三维重建使用摄影测量、计算机视觉技术,利用立体视觉恢复真实相机姿态,获取现实物体的三维信息,并进行虚拟三维场景重现。1、OpenDroneMapODM是一个基于航空影像的三维重建集成工具箱,利用多幅航空影像恢复相机姿态和3D场景,可以生产点云、三维贴图模型、正射影像、数字表面模型、数字高程模型等,提供Web接口,支持CUDA加速,基础函数库使用OpenSfM,OpenMVS,PDAL,Entwin
- 【三维重建】双目立体视觉
Patrick star`
人工智能
通过极几何可以求得极线,现在我们需要将左边的图变成右边的平行视图。所有的极线都经过极点(e/e'),如果极点位于无穷远处,那所有的极线都平行。(极几何的基础知识可以参考这篇文章:【三维重建】对极几何-CSDN博客)平行视图中,可以利用视差就得深度,视差越小深度越深。如何得到平行视图呢?
- [Python图像处理] 使用OpenCV创建深度图
AI technophile
Python图像处理实战python图像处理计算机视觉
使用OpenCV创建深度图双目视觉创建深度图相关链接双目视觉在传统的立体视觉中,两个摄像机彼此水平移动,用于获得场景上的两个不同视图(作为立体图像),就像人类的双目视觉系统:通过比较这两个图像,可以以视差的形式获得相对深度信息,该视差编码对应图像点的水平坐标的差异。两个立体图像中单个像素的位移量称为视差(disparity),像素的视差与其在场景中的深度成反比。可以用灰度值对每个像素的视差进行编码
- 11. 双目视觉之立体视觉基础
宛如新生
slam中的标定问题数码相机
目录1.深度恢复1.1单目相机缺少深度信息1.2如何恢复场景深度?1.3深度恢复的思路2.对极几何约束2.1直观感受2.2数学上的描述1.深度恢复1.1单目相机缺少深度信息之前学习过相机模型,最经典的就是小孔成像模型。我们知道相机通过小孔成像模型对世界点的观测是缺少深度信息的。我们得到的只是世界点在相机平面上的一个投影。如下图,世界点P只要是在那条红色线上,他在相机上的成像位置就是P‘,所以我们无
- 12. 双目视觉之极线矫正
宛如新生
slam中的标定问题数码相机
目录1.为何要进行极线矫正?2.极线矫正过程。1.为何要进行极线矫正?之前的文章立体视觉基础中介绍单目相机无法获得深度信息,我们可以通过多个相机来实现立体视觉。通过两个相机对某场景同时观测时,当我们知道了相机的内(外)参以及两者之间的基线,然后通过某种方式找到两相机对同一世界点的观测的关联关系(类似特征匹配),就可以计算出视差,最终通过下列公式计算出观测到的世界点的深度。我们假设双目相机已经标定完
- 第六篇【传奇开心果系列】Python的OpenCV库技术点案例示例:摄像头标定
传奇开心果编程
Python库OpenCV技术点案例示例短博文opencv计算机视觉python
传奇开心果博文系列系列博文目录Python的OpenCV库技术点案例示例系列博文目录一、前言二、OpenCV摄像头标定介绍三、摄像头内外参数标定示例代码和扩展四、立体视觉标定示例代码和扩展五、归纳总结系列博文目录Python的OpenCV库技术点案例示例系列博文目录一、前言OpenCV摄像头标定:包括摄像头内外参数标定、立体视觉标定等功能。二、OpenCV摄像头标定介绍OpenCV是一个广泛使用的
- 双目立体视觉——视差图(stereo matching)三种相似度算法实现
7lingqi7
1024程序员节python笔记学习
目录双目立体视觉的理解:平行视图的极几何(第二种实现视差图的思路)图像校正(cameracalibration)实现——相似度匹配,视差计算重要影响参数实验报告讨论部分SGBM算法示例,这个效果更好,速度也更快。【双目视觉】SGBM算法应用(Python版)_落叶随峰的博客-CSDN博客任务:生成视差图关键词:视差原理(平行视图的极几何),图像校正,相似度匹配,视差计算和匹配图片数据集:visio
- 立体视觉几何 (二)
dc爱傲雪和技术
计算机视觉
1.视差2.立体匹配立体匹配的基本概念:匹配目标:在立体匹配中,主要目标是确定左图像中像素的右图像中的对应像素。这个对应像素通常位于相同的行。视差(Disparity):视差d是右图像中对应像素xr和左图像中像素xl之间的水平位置差。视差是深度信息的关键指标。匹配方法:方法涉及在左图像中以某个像素为中心取一个窗口W,然后将这个窗口沿水平方向平移视差d,并将其放置在右图像中。接着比较左图像中窗口W和
- 立体视觉几何(一)
dc爱傲雪和技术
计算机视觉
1.什么是立体视觉几何立体视觉=对应+重建:•对应:给定一幅图像中的点pl,找到另一幅图像中的对应点pr。•重建:给定对应关系(pl,pr),计算空间中相应点的3D坐标P。立体视觉:从图像中的投影恢复场景中点的三维位置的过程类型:基于窗口/局部的算法和全局算法三角测量:给定pl,我们知道点P位于连接pl和左光心Cl的直线Ll上。**假设我们确切地知道相机的参数,我们可以显式计算Ll和Lr的参数。*
- 重大突破!单向结构光系统校准方法,平面测量精度提高2.5倍,球面测量精度提高2倍
3DCV
学习计算机视觉人工智能算法深度学习平面
作者:小柠檬|来源:3DCV在公众号「3DCV」后台,回复「原论文」获取论文本文提出了一种新颖的单向结构光系统标定方法,该方法利用白色平面作为标定目标,而不是具有圆点或方格方块等物理特征的传统目标。该方法通过采用具有投影随机图案和平面拟合的立体视觉来重建白色平面。为了促进校准过程,使用了辅助摄像机和辅助投影仪。实验结果表明,所提出的方法对于单向结构光系统具有较高的标定精度。原文链接:重大突破!单向
- vslam论文24:ESVIO: 基于事件相机的双目VIO(RAL 2023)
xsyaoxuexi
视觉SLAM论文阅读c++人工智能学习笔记
摘要异步输出低延迟事件流的事件相机为具有挑战性的情况下的状态估计提供了很大的机会。尽管近年来基于事件的视觉里程测量技术得到了广泛的研究,但大多数都是基于单目的,而对立体事件视觉的研究很少。在本文中,我们介绍了ESVIO,这是第一个基于事件的立体视觉惯性里程计,它利用了事件流、标准图像和惯性测量的互补优势。我们建议的pipeline包括ESIO(纯基于事件的)和ESVIO(带有图像辅助的事件),它们
- OpenCV-Python(43):姿势估计
图灵追慕者
opencv-pythonopencvcalib3D模块姿势估计摄像机标定立体视觉3D重构
目标学习了解calib3D模块学习在图像中创建3D效果calib3D模块OpenCV-Python的calib3D模块是OpenCV库中的一个重要模块,用于摄像头标定和三维重建等计算机视觉任务。该模块提供了一些函数和类,用于摄像头标定、立体视觉和三维重建等方面的操作。下面是一些calib3D模块常用的函数和类的介绍:1.findChessboardCorners():用于在一张图片中查找棋盘格角点
- 工业相机相关概念词介绍:ISP算法、线阵相机、常用术语
明月醉窗台
应用工具使用介绍图像处理相关算法数码相机接口隔离原则算法计算机视觉图像处理
工业相机相关概念词介绍:ISP算法、线阵相机、常用术语ISP基本框架及算法介绍相机的常用设置50个常用术语关于立体视觉相关算法,可参考我的专栏:https://blog.csdn.net/yohnyang/category_11720857.html0.ISP基本框架及算法介绍ISP(ImageSignalProcessor),即图像处理,主要作用是对前端图像传感器输出的信号做后期处理,主要功能有
- 使用opencv做双目测距(相机标定+立体匹配+测距)
AAI机器之心
opencv数码相机人工智能pytorch机器学习计算机视觉
最近在做双目测距,觉得有必要记录点东西,所以我的第一篇博客就这么诞生啦~双目测距属于立体视觉这一块,我觉得应该有很多人踩过这个坑了,但网上的资料依旧是云里雾里的,要么是理论讲一大堆,最后发现还不知道怎么做,要么就是直接代码一贴,让你懵逼。所以今天我想做的,是尽量给大家一个明确的阐述,并且能够上手做出来。一、标定首先我们要对摄像头做标定,具体的公式推导在learningopencv中有详细的解释,这
- ZED使用指南(八)Depth Sensing
Happy_Cabbage
ZED2计算机视觉人工智能
ZED立体相机再现了人类双目视觉的工作方式。通过比较左眼和右眼看到的两种视图,不仅可以推断深度,还可以推断空间中的3D运动。ZED立体相机可以捕捉到场景的高分辨率3D视频,通过比较左右图像之间的像素位移可以估计深度和运动。深度感知深度感知是指确定物体之间的距离,以三维的角度看世界。到目前为止,深度传感器仅限于近距离和室内的深度感知,限制了其在手势控制和身体跟踪方面的应用。ZED是第一个使用立体视觉
- 双目立体视觉进入“上车”时代,这家厂商如何“领跑”全球
高工智能汽车
汽车
车载双目立体视觉正在迎来爆发式增长的窗口期。《高工智能汽车》了解到,继大众、丰田、零跑等越来越多主机厂开始从单目切换为双目方案之后,小鹏汽车也已经布局双目立体感知方案,以提高L2及以上智能驾驶的安全性和可靠性。现阶段,以NOA为代表的高阶智能驾驶系统,已经成为了车企决战智能化下半场竞争的关键。根据高工智能汽车研究院最新发布数据显示,2023年1-9月,中国市场(不含进出口)乘用车前装标配(软硬件)
- OpenCV 中 core, imgcodecs, imgproc, calib3d, highgui, dnn, features2d, flann, gapi, ml, objc等分别是什么?
型者无疆
opencv3ddnn
下面是关于这些OpenCV模块的简要说明:core:OpenCV核心功能模块,提供了基本的数据结构、图像处理函数和数学运算等常见功能。imgcodecs:图像编解码模块,用于读取、写入和编解码各种图像格式,如JPEG、PNG等。imgproc:图像处理模块,提供了图像处理和操作的函数,包括滤波、边缘检测、几何变换等。calib3d:相机标定和三维重建模块,用于相机标定、立体视觉、姿态估计和三维物体
- Active Stereo Without Pattern Projector论文精读
你不困我困
论文精读深度学习计算机视觉
1.背景补充主动立体相机和被动立体相机的主要区别在于它们获取立体视觉信息的方式主动立体相机12:主动立体视觉是指寻找最佳的视角去重建目标或者场景1。主动视觉的实现方式通常有:改变环境中的光照条件、改变相机的视角、移动相机自身位置等,其目的是提高感知结果的质量1。主动立体视觉还包括没有先验的场景信息去主动识别或是跟踪,存在与环境的交互1。结构光法采用主动投射已知图案的方法来实现匹配特征点,达到较高的
- RC-MVSNet:无监督的多视角立体视觉与神经渲染--论文笔记(2022年)
知识推荐号
MVS论文笔记论文阅读图像处理python三维重建
RC-MVSNet:无监督的多视角立体视觉与神经渲染--论文笔记(2022年)摘要1引言2相关工作2.1基于监督的MVS2.2无监督和自监督MVS2.3多视图神经渲染3实现方法3.1无监督的MVS网络3.2参考试图合成3.3深度渲染一致性Chang,D.etal.(2022).RC-MVSNet:UnsupervisedMulti-ViewStereowithNeuralRendering.In:
- PCL深度图像 RangeImage
Ivy_daisy
PCLPCLRangeImage
http://www.cnblogs.com/li-yao7758258/p/6474699.html目前深度图像的获取方法有激光雷达深度成像法,计算机立体视觉成像,坐标测量机法,莫尔条纹法,结构光法等等,针对深度图像的研究重点主要集中在以下几个方面,深度图像的分割技术,深度图像的边缘检测技术,基于不同视点的多幅深度图像的配准技术,基于深度数据的三维重建技术,基于三维深度图像的三维目标识别技术,深
- 【2021集创赛】基于ARM-M3的双目立体视觉避障系统 SOC设计
极术社区
IC技术竞赛作品分享arm开发
本作品参与极术社区组织的有奖征集|秀出你的集创赛作品风采,免费电子产品等你拿~活动。团队介绍参赛单位:上海电力大学队伍名称:骇行队总决赛奖项:二等奖1.摘要随着信息技术的发展,AGV(AutomatedGuidedVehicle,AGV)无人自动导航小车已被广泛应用于智能制造、智慧物流等场景。AGV搬运车的导航系统主要利用视觉、激光雷达等传感器,其主控系统大多使用多个芯片及其复杂嵌入式系统实现,成
- 《视觉SLAM十四讲》-- 建图
算法导航
视觉SLAM十四讲SLAM算法计算机视觉
11建图11.1概述(1)地图的几类用处:定位:导航:机器人在地图中进行路径规划;避障重建交互:人与地图之间的互动(2)几类地图稀疏地图稠密地图语义地图11.2单目稠密重建11.2.1立体视觉(1)稠密重建中,我们需要知道每个像素(或大部分像素)的距离,对此有以下几种方案:使用单目相机,估计相机运动,并且三角化计算像素的距离;使用双目相机,利用左右目的视差计算像素的距离;使用RGB-D相机直接获取
- halcon——缺陷检测常用方法总结(光度立体)
明月清风_@
Halcon计算机视觉人工智能深度学习python机器学习
引言机器视觉中缺陷检测分为一下几种:blob分析+特征模板匹配(定位)+差分光度立体特征训练测量拟合频域+空间域结合:halcon——缺陷检测常用方法总结(频域空间域结合)-唯有自己强大-博客园(cnblogs.com)深度学习前一篇总结了频域与空间域的结合使用,本篇就光度立体的缺陷检测做一个总结。光度立体在工业领域,表面检测是一个非常广泛的应用领域。在halcon中,使用增强的光度立体视觉方法,
- Deep Learning for Monocular Depth Estimation: A Review.基于深度学习的深度估计
qaaaaaaz
计算机视觉深度学习人工智能
传统的深度估计方法通常是使用双目相机,计算两个2D图像的视差,然后通过立体匹配和三角剖分得到深度图。然而,双目深度估计方法至少需要两个固定的摄像机,当场景的纹理较少或者没有纹理的时候,很难从图像中捕捉足够的特征来匹配。所以最近单目深度估计发展的越来越快,但是由于单目图像缺乏可靠的立体视觉关系,因此在三维空间中回归深度本质上是一种不适定问题。单目图像采用二维形式来重新反射三维世界,然而,有一维场景叫
- MVSNet论文笔记
知识推荐号
MVS论文笔记论文阅读图像处理多视图三维重建深度学习
MVSNet论文笔记摘要1引言2相关基础2.1多视图立体视觉重建(MVSReconstruction)2.2基于学习的立体视觉(LearnedStereo)2.3基于学习的多视图的立体视觉(LearnedMVS)Yao,Y.,Luo,Z.,Li,S.,Fang,T.,Quan,L.(2018).MVSNet:DepthInferenceforUnstructuredMulti-viewStereo
- knob UI插件使用
换个号韩国红果果
JavaScriptjsonpknob
图形是用canvas绘制的
js代码
var paras = {
max:800,
min:100,
skin:'tron',//button type
thickness:.3,//button width
width:'200',//define canvas width.,canvas height
displayInput:'tr
- Android+Jquery Mobile学习系列(5)-SQLite数据库
白糖_
JQuery Mobile
目录导航
SQLite是轻量级的、嵌入式的、关系型数据库,目前已经在iPhone、Android等手机系统中使用,SQLite可移植性好,很容易使用,很小,高效而且可靠。
因为Android已经集成了SQLite,所以开发人员无需引入任何JAR包,而且Android也针对SQLite封装了专属的API,调用起来非常快捷方便。
我也是第一次接触S
- impala-2.1.2-CDH5.3.2
dayutianfei
impala
最近在整理impala编译的东西,简单记录几个要点:
根据官网的信息(https://github.com/cloudera/Impala/wiki/How-to-build-Impala):
1. 首次编译impala,推荐使用命令:
${IMPALA_HOME}/buildall.sh -skiptests -build_shared_libs -format
2.仅编译BE
${I
- 求二进制数中1的个数
周凡杨
java算法二进制
解法一:
对于一个正整数如果是偶数,该数的二进制数的最后一位是 0 ,反之若是奇数,则该数的二进制数的最后一位是 1 。因此,可以考虑利用位移、判断奇偶来实现。
public int bitCount(int x){
int count = 0;
while(x!=0){
if(x%2!=0){ /
- spring中hibernate及事务配置
g21121
Hibernate
hibernate的sessionFactory配置:
<!-- hibernate sessionFactory配置 -->
<bean id="sessionFactory"
class="org.springframework.orm.hibernate3.LocalSessionFactoryBean">
<
- log4j.properties 使用
510888780
log4j
log4j.properties 使用
一.参数意义说明
输出级别的种类
ERROR、WARN、INFO、DEBUG
ERROR 为严重错误 主要是程序的错误
WARN 为一般警告,比如session丢失
INFO 为一般要显示的信息,比如登录登出
DEBUG 为程序的调试信息
配置日志信息输出目的地
log4j.appender.appenderName = fully.qua
- Spring mvc-jfreeChart柱图(2)
布衣凌宇
jfreechart
上一篇中生成的图是静态的,这篇将按条件进行搜索,并统计成图表,左面为统计图,右面显示搜索出的结果。
第一步:导包
第二步;配置web.xml(上一篇有代码)
建BarRenderer类用于柱子颜色
import java.awt.Color;
import java.awt.Paint;
import org.jfree.chart.renderer.category.BarR
- 我的spring学习笔记14-容器扩展点之PropertyPlaceholderConfigurer
aijuans
Spring3
PropertyPlaceholderConfigurer是个bean工厂后置处理器的实现,也就是BeanFactoryPostProcessor接口的一个实现。关于BeanFactoryPostProcessor和BeanPostProcessor类似。我会在其他地方介绍。
PropertyPlaceholderConfigurer可以将上下文(配置文件)中的属性值放在另一个单独的标准java
- maven 之 cobertura 简单使用
antlove
maventestunitcoberturareport
1. 创建一个maven项目
2. 创建com.CoberturaStart.java
package com;
public class CoberturaStart {
public void helloEveryone(){
System.out.println("=================================================
- 程序的执行顺序
百合不是茶
JAVA执行顺序
刚在看java核心技术时发现对java的执行顺序不是很明白了,百度一下也没有找到适合自己的资料,所以就简单的回顾一下吧
代码如下;
经典的程序执行面试题
//关于程序执行的顺序
//例如:
//定义一个基类
public class A(){
public A(
- 设置session失效的几种方法
bijian1013
web.xmlsession失效监听器
在系统登录后,都会设置一个当前session失效的时间,以确保在用户长时间不与服务器交互,自动退出登录,销毁session。具体设置很简单,方法有三种:(1)在主页面或者公共页面中加入:session.setMaxInactiveInterval(900);参数900单位是秒,即在没有活动15分钟后,session将失效。这里要注意这个session设置的时间是根据服务器来计算的,而不是客户端。所
- java jvm常用命令工具
bijian1013
javajvm
一.概述
程序运行中经常会遇到各种问题,定位问题时通常需要综合各种信息,如系统日志、堆dump文件、线程dump文件、GC日志等。通过虚拟机监控和诊断工具可以帮忙我们快速获取、分析需要的数据,进而提高问题解决速度。 本文将介绍虚拟机常用监控和问题诊断命令工具的使用方法,主要包含以下工具:
&nbs
- 【Spring框架一】Spring常用注解之Autowired和Resource注解
bit1129
Spring常用注解
Spring自从2.0引入注解的方式取代XML配置的方式来做IOC之后,对Spring一些常用注解的含义行为一直处于比较模糊的状态,写几篇总结下Spring常用的注解。本篇包含的注解有如下几个:
Autowired
Resource
Component
Service
Controller
Transactional
根据它们的功能、目的,可以分为三组,Autow
- mysql 操作遇到safe update mode问题
bitray
update
我并不知道出现这个问题的实际原理,只是通过其他朋友的博客,文章得知的一个解决方案,目前先记录一个解决方法,未来要是真了解以后,还会继续补全.
在mysql5中有一个safe update mode,这个模式让sql操作更加安全,据说要求有where条件,防止全表更新操作.如果必须要进行全表操作,我们可以执行
SET
- nginx_perl试用
ronin47
nginx_perl试用
因为空闲时间比较多,所以在CPAN上乱翻,看到了nginx_perl这个项目(原名Nginx::Engine),现在托管在github.com上。地址见:https://github.com/zzzcpan/nginx-perl
这个模块的目的,是在nginx内置官方perl模块的基础上,实现一系列异步非阻塞的api。用connector/writer/reader完成类似proxy的功能(这里
- java-63-在字符串中删除特定的字符
bylijinnan
java
public class DeleteSpecificChars {
/**
* Q 63 在字符串中删除特定的字符
* 输入两个字符串,从第一字符串中删除第二个字符串中所有的字符。
* 例如,输入”They are students.”和”aeiou”,则删除之后的第一个字符串变成”Thy r stdnts.”
*/
public static voi
- EffectiveJava--创建和销毁对象
ccii
创建和销毁对象
本章内容:
1. 考虑用静态工厂方法代替构造器
2. 遇到多个构造器参数时要考虑用构建器(Builder模式)
3. 用私有构造器或者枚举类型强化Singleton属性
4. 通过私有构造器强化不可实例化的能力
5. 避免创建不必要的对象
6. 消除过期的对象引用
7. 避免使用终结方法
1. 考虑用静态工厂方法代替构造器
类可以通过
- [宇宙时代]四边形理论与光速飞行
comsci
从四边形理论来推论 为什么光子飞船必须获得星光信号才能够进行光速飞行?
一组星体组成星座 向空间辐射一组由复杂星光信号组成的辐射频带,按照四边形-频率假说 一组频率就代表一个时空的入口
那么这种由星光信号组成的辐射频带就代表由这些星体所控制的时空通道,该时空通道在三维空间的投影是一
- ubuntu server下python脚本迁移数据
cywhoyi
pythonKettlepymysqlcx_Oracleubuntu server
因为是在Ubuntu下,所以安装python、pip、pymysql等都极其方便,sudo apt-get install pymysql,
但是在安装cx_Oracle(连接oracle的模块)出现许多问题,查阅相关资料,发现这边文章能够帮我解决,希望大家少走点弯路。http://www.tbdazhe.com/archives/602
1.安装python
2.安装pip、pymysql
- Ajax正确但是请求不到值解决方案
dashuaifu
Ajaxasync
Ajax正确但是请求不到值解决方案
解决方案:1 . async: false , 2. 设置延时执行js里的ajax或者延时后台java方法!!!!!!!
例如:
$.ajax({ &
- windows安装配置php+memcached
dcj3sjt126com
PHPInstallmemcache
Windows下Memcached的安装配置方法
1、将第一个包解压放某个盘下面,比如在c:\memcached。
2、在终端(也即cmd命令界面)下输入 'c:\memcached\memcached.exe -d install' 安装。
3、再输入: 'c:\memcached\memcached.exe -d start' 启动。(需要注意的: 以后memcached将作为windo
- iOS开发学习路径的一些建议
dcj3sjt126com
ios
iOS论坛里有朋友要求回答帖子,帖子的标题是: 想学IOS开发高阶一点的东西,从何开始,然后我吧啦吧啦回答写了很多。既然敲了那么多字,我就把我写的回复也贴到博客里来分享,希望能对大家有帮助。欢迎大家也到帖子里讨论和分享,地址:http://bbs.csdn.net/topics/390920759
下面是我回复的内容:
结合自己情况聊下iOS学习建议,
- Javascript闭包概念
fanfanlovey
JavaScript闭包
1.参考资料
http://www.jb51.net/article/24101.htm
http://blog.csdn.net/yn49782026/article/details/8549462
2.内容概述
要理解闭包,首先需要理解变量作用域问题
内部函数可以饮用外面全局变量
var n=999;
functio
- yum安装mysql5.6
haisheng
mysql
1、安装http://dev.mysql.com/get/mysql-community-release-el7-5.noarch.rpm
2、yum install mysql
3、yum install mysql-server
4、vi /etc/my.cnf 添加character_set_server=utf8
- po/bo/vo/dao/pojo的详介
IT_zhlp80
javaBOVODAOPOJOpo
JAVA几种对象的解释
PO:persistant object持久对象,可以看成是与数据库中的表相映射的java对象。最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合。PO中应该不包含任何对数据库的操作.
VO:value object值对象。通常用于业务层之间的数据传递,和PO一样也是仅仅包含数据而已。但应是抽象出的业务对象,可
- java设计模式
kerryg
java设计模式
设计模式的分类:
一、 设计模式总体分为三大类:
1、创建型模式(5种):工厂方法模式,抽象工厂模式,单例模式,建造者模式,原型模式。
2、结构型模式(7种):适配器模式,装饰器模式,代理模式,外观模式,桥接模式,组合模式,享元模式。
3、行为型模式(11种):策略模式,模版方法模式,观察者模式,迭代子模式,责任链模式,命令模式,备忘录模式,状态模式,访问者
- [1]CXF3.1整合Spring开发webservice——helloworld篇
木头.java
springwebserviceCXF
Spring 版本3.2.10
CXF 版本3.1.1
项目采用MAVEN组织依赖jar
我这里是有parent的pom,为了简洁明了,我直接把所有的依赖都列一起了,所以都没version,反正上面已经写了版本
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="ht
- Google 工程师亲授:菜鸟开发者一定要投资的十大目标
qindongliang1922
工作感悟人生
身为软件开发者,有什么是一定得投资的? Google 软件工程师 Emanuel Saringan 整理了十项他认为必要的投资,第一项就是身体健康,英文与数学也都是必备能力吗?来看看他怎么说。(以下文字以作者第一人称撰写)) 你的健康 无疑地,软件开发者是世界上最久坐不动的职业之一。 每天连坐八到十六小时,休息时间只有一点点,绝对会让你的鲔鱼肚肆无忌惮的生长。肥胖容易扩大罹患其他疾病的风险,
- linux打开最大文件数量1,048,576
tianzhihehe
clinux
File descriptors are represented by the C int type. Not using a special type is often considered odd, but is, historically, the Unix way. Each Linux process has a maximum number of files th
- java语言中PO、VO、DAO、BO、POJO几种对象的解释
衞酆夼
javaVOBOPOJOpo
PO:persistant object持久对象
最形象的理解就是一个PO就是数据库中的一条记录。好处是可以把一条记录作为一个对象处理,可以方便的转为其它对象。可以看成是与数据库中的表相映射的java对象。最简单的PO就是对应数据库中某个表中的一条记录,多个记录可以用PO的集合。PO中应该不包含任何对数据库的操作。
BO:business object业务对象
封装业务逻辑的java对象