标签(空格分隔): Pytorch 源码
import torch.backends.cudnn as cudnn
from cifar10data import CIFAR10Data
from model import MobileNetV2
from train import Train
from utils import parse_args, create_experiment_dirs
def main():
# Parse the JSON arguments
config_args = parse_args()
# Create the experiment directories
_, config_args.summary_dir, config_args.checkpoint_dir = create_experiment_dirs(
config_args.experiment_dir)
model = MobileNetV2(config_args)#建立图模型
if config_args.cuda:
model.cuda()
cudnn.enabled = True
cudnn.benchmark = True
print("Loading Data...")
data = CIFAR10Data(config_args)#数据流读入
print("Data loaded successfully\n")
trainer = Train(model, data.trainloader, data.testloader, config_args)
if config_args.to_train:
try:
print("Training...")
trainer.train()
print("Training Finished\n")
except KeyboardInterrupt:
pass
if config_args.to_test:
print("Testing...")
trainer.test(data.testloader)
print("Testing Finished\n")
if __name__ == "__main__":
main()
import torch.nn as nn
from layers import inverted_residual_sequence, conv2d_bn_relu6
# 建立网络图模型
class MobileNetV2(nn.Module):
def __init__(self, args):
super(MobileNetV2, self).__init__()
# 配置某些block的stride,满足downsampling的需求
s1, s2 = 2, 2
if args.downsampling == 16:
s1, s2 = 2, 1
elif args.downsampling == 8:
s1, s2 = 1, 1
'''
network_settings网络的相关配置,从该参数可以看出,Mobile-Net由9个部分组成,
姑且叫做Mobile block。
network_settings中:
't'表示Inverted Residuals的扩征系数
'c'表示该block输出的通道数
‘n’表示当前block由几个残差单元组成
's'表示当前block的stride
'''
# Network is created here, then will be unpacked into nn.sequential
self.network_settings = [{'t': -1, 'c': 32, 'n': 1, 's': s1},
{'t': 1, 'c': 16, 'n': 1, 's': 1},
{'t': 6, 'c': 24, 'n': 2, 's': s2},
{'t': 6, 'c': 32, 'n': 3, 's': 2},
{'t': 6, 'c': 64, 'n': 4, 's': 2},
{'t': 6, 'c': 96, 'n': 3, 's': 1},
{'t': 6, 'c': 160, 'n': 3, 's': 2},
{'t': 6, 'c': 320, 'n': 1, 's': 1},
{'t': None, 'c': 1280, 'n': 1, 's': 1}]
self.num_classes = args.num_classes
###############################################################################################################
# Feature Extraction part
# Layer 0
# args.width_multiplier网络的通道"瘦身"系数
# block 0
self.network = [conv2d_bn_relu6(args.num_channels,
int(self.network_settings[0]['c'] * args.width_multiplier),args.kernel_size,
self.network_settings[0]['s'], args.dropout_prob)]
# Layers from 1 to 7
for i in range(1, 8):
# inverted_residual_sequence 根据当前network_settings[i]的配置建立图模型
self.network.extend(
inverted_residual_sequence(
int(self.network_settings[i - 1]['c'] * args.width_multiplier),
int(self.network_settings[i]['c'] * args.width_multiplier),
self.network_settings[i]['n'], self.network_settings[i]['t'],
args.kernel_size, self.network_settings[i]['s']))
# Last layer before flattening
self.network.append(
conv2d_bn_relu6(int(self.network_settings[7]['c'] * args.width_multiplier), int(self.network_settings[8]['c'] * args.width_multiplier),1 , self.network_settings[8]['s'], args.dropout_prob))
###############################################################################################################
# Classification part
# 以上输出的特征图进行池化 分类
self.network.append(nn.Dropout2d(args.dropout_prob, inplace=True))
self.network.append(nn.AvgPool2d(
(args.img_height // args.downsampling, args.img_width // args.downsampling)))
self.network.append(nn.Dropout2d(args.dropout_prob, inplace=True))
self.network.append(
nn.Conv2d(int(self.network_settings[8]['c'] * args.width_multiplier), self.num_classes,1, bias=True))
self.network = nn.Sequential(*self.network)
self.initialize()
def forward(self, x): # MobileNetV2的前向传播
# Debugging mode
# for op in self.network:
# x = op(x)
# print(x.shape)
x = self.network(x)
x = x.view(-1, self.num_classes)
return x
# 初始化权重函数
def initialize(self):
"""Initializes the model parameters"""
for m in self.modules():
if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear):
nn.init.xavier_normal(m.weight)
if m.bias is not None:
nn.init.constant(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant(m.weight, 1)
nn.init.constant(m.bias, 0)
def inverted_residual_sequence(in_channels, out_channels, num_units, expansion_factor=6,kernel_size=3,initial_stride=2):
bottleneck_arr = [
InvertedResidualBlock(in_channels, out_channels, expansion_factor, kernel_size,initial_stride) # 第一个单元stride=initial_stride 后续 stride=1
for i in range(num_units - 1):
bottleneck_arr.append(
InvertedResidualBlock(out_channels, out_channels, expansion_factor, kernel_size, 1))
return bottleneck_arr
class InvertedResidualBlock(nn.Module):
def __init__(self, in_channels, out_channels, expansion_factor=6, kernel_size=3, stride=2):
super(InvertedResidualBlock, self).__init__()
if stride != 1 and stride != 2:
raise ValueError("Stride should be 1 or 2")
self.block = nn.Sequential(
nn.Conv2d(in_channels, in_channels * expansion_factor, 1, bias=False), # 扩展通道
nn.BatchNorm2d(in_channels * expansion_factor),
nn.ReLU6(inplace=True),
nn.Conv2d(in_channels * expansion_factor, in_channels * expansion_factor,
kernel_size, stride, 1,
groups=in_channels * expansion_factor, bias=False), # depth-wise卷积操作
nn.BatchNorm2d(in_channels * expansion_factor),
nn.ReLU6(inplace=True),
nn.Conv2d(in_channels * expansion_factor, out_channels, 1,
bias=False), # 恢复输出通道
nn.BatchNorm2d(out_channels))
self.is_residual = True if stride == 1 else False # 当该单元的stide = 1 时采用skip connection
self.is_conv_res = False if in_channels == out_channels else True # 匹配输入 输出通道的一致性
# Assumption based on previous ResNet papers: If the number of filters doesn't match,
# there should be a conv1x1 operation.
if stride == 1 and self.is_conv_res:
self.conv_res = nn.Sequential(nn.Conv2d(in_channels, out_channels, 1, bias=False),
nn.BatchNorm2d(out_channels))
def forward(self, x):# 前向传播
block = self.block(x)
if self.is_residual:
if self.is_conv_res:
return self.conv_res(x) + block
return x + block
return block
‘’‘
该函数分别进行3x3卷积 BN ReLU6操作
’‘’
def conv2d_bn_relu6(in_channels, out_channels, kernel_size=3, stride=2, dropout_prob=0.0):
# To preserve the equation of padding. (k=1 maps to pad 0, k=3 maps to pad 1, k=5 maps to pad 2, etc.)
padding = (kernel_size + 1) // 2 - 1
return nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, bias=False),
nn.BatchNorm2d(out_channels),
# For efficiency, Dropout is placed before Relu.
nn.Dropout2d(dropout_prob, inplace=True),
# Assumption: Relu6 is used everywhere.
nn.ReLU6(inplace=True)
)
import shutil
import torch.nn as nn
import torch.optim
from tensorboardX import SummaryWriter
from torch.autograd import Variable
from torch.optim.rmsprop import RMSprop
from tqdm import tqdm
from utils import AverageTracker
class Train:
def __init__(self, model, trainloader, valloader, args):
"""
关键参数说明:
model:定义的图模型
trainloader:训练集的输入
valloader:测试集的输入
"""
self.model = model
self.trainloader = trainloader
self.valloader = valloader
self.args = args
self.start_epoch = 0
self.best_top1 = 0.0
# Loss function and Optimizer
self.loss = None
self.optimizer = None
self.create_optimization() #定义网络的优化函数及其配置
# Model Loading
self.load_pretrained_model() # 导入预训练模型
self.load_checkpoint(self.args.resume_from) # 恢复训练模型
# Tensorboard Writer
self.summary_writer = SummaryWriter(log_dir=args.summary_dir) # 统计部分变量在训练时的变化情况
def train(self):
for cur_epoch in range(self.start_epoch, self.args.num_epochs):
# Initialize tqdm
tqdm_batch = tqdm(self.trainloader,
desc="Epoch-" + str(cur_epoch) + "-")
# Learning rate adjustment
self.adjust_learning_rate(self.optimizer, cur_epoch) # 调整学习率
# Meters for tracking the average values
loss, top1, top5 = AverageTracker(), AverageTracker(), AverageTracker()
# Set the model to be in training mode (for dropout and batchnorm)
self.model.train()
for data, target in tqdm_batch:
if self.args.cuda:
data, target = data.cuda(async=self.args.async_loading), target.cuda(async=self.args.async_loading)
data_var, target_var = Variable(data), Variable(target)
# Forward pass
output = self.model(data_var)
cur_loss = self.loss(output, target_var)
# Optimization step
self.optimizer.zero_grad()
cur_loss.backward()
self.optimizer.step()
# Top-1 and Top-5 Accuracy Calculation
cur_acc1, cur_acc5 = self.compute_accuracy(output.data, target, topk=(1, 5))
loss.update(cur_loss.data[0])
top1.update(cur_acc1[0])
top5.update(cur_acc5[0])
# Summary Writing
self.summary_writer.add_scalar("epoch-loss", loss.avg, cur_epoch)
self.summary_writer.add_scalar("epoch-top-1-acc", top1.avg, cur_epoch)
self.summary_writer.add_scalar("epoch-top-5-acc", top5.avg, cur_epoch)
# Print in console
tqdm_batch.close()
print("Epoch-" + str(cur_epoch) + " | " + "loss: " + str(
loss.avg) + " - acc-top1: " + str(
top1.avg)[:7] + "- acc-top5: " + str(top5.avg)[:7])
# Evaluate on Validation Set
if cur_epoch % self.args.test_every == 0 and self.valloader:
self.test(self.valloader, cur_epoch)
# Checkpointing
is_best = top1.avg > self.best_top1
self.best_top1 = max(top1.avg, self.best_top1)
self.save_checkpoint({
'epoch': cur_epoch + 1,
'state_dict': self.model.state_dict(),
'best_top1': self.best_top1,
'optimizer': self.optimizer.state_dict(),
}, is_best)
def test(self, testloader, cur_epoch=-1):
loss, top1, top5 = AverageTracker(), AverageTracker(), AverageTracker()
# Set the model to be in testing mode (for dropout and batchnorm)
self.model.eval()
for data, target in testloader:
if self.args.cuda:
data, target = data.cuda(async=self.args.async_loading), target.cuda(
async=self.args.async_loading)
data_var, target_var = Variable(data, volatile=True), Variable(target, volatile=True)
# Forward pass
output = self.model(data_var)
cur_loss = self.loss(output, target_var)
# Top-1 and Top-5 Accuracy Calculation
cur_acc1, cur_acc5 = self.compute_accuracy(output.data, target, topk=(1, 5))
loss.update(cur_loss.data[0])
top1.update(cur_acc1[0])
top5.update(cur_acc5[0])
if cur_epoch != -1:
# Summary Writing
self.summary_writer.add_scalar("test-loss", loss.avg, cur_epoch)
self.summary_writer.add_scalar("test-top-1-acc", top1.avg, cur_epoch)
self.summary_writer.add_scalar("test-top-5-acc", top5.avg, cur_epoch)
print("Test Results" + " | " + "loss: " + str(loss.avg) + " - acc-top1: " + str(
top1.avg)[:7] + "- acc-top5: " + str(top5.avg)[:7])
def save_checkpoint(self, state, is_best, filename='checkpoint.pth.tar'):
torch.save(state, self.args.checkpoint_dir + filename)
if is_best:
shutil.copyfile(self.args.checkpoint_dir + filename,
self.args.checkpoint_dir + 'model_best.pth.tar')
def compute_accuracy(self, output, target, topk=(1,)):
"""Computes the accuracy@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, idx = output.topk(maxk, 1, True, True)
idx = idx.t()
correct = idx.eq(target.view(1, -1).expand_as(idx))
acc_arr = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
acc_arr.append(correct_k.mul_(1.0 / batch_size))
return acc_arr
def adjust_learning_rate(self, optimizer, epoch):
"""Sets the learning rate to the initial LR multiplied by 0.98 every epoch"""
learning_rate = self.args.learning_rate * (self.args.learning_rate_decay ** epoch)
for param_group in optimizer.param_groups:
param_group['lr'] = learning_rate
def create_optimization(self):
self.loss = nn.CrossEntropyLoss()
if self.args.cuda:
self.loss.cuda()
self.optimizer = RMSprop(self.model.parameters(), self.args.learning_rate,
momentum=self.args.momentum,
weight_decay=self.args.weight_decay)
def load_pretrained_model(self):
try:
print("Loading ImageNet pretrained weights...")
pretrained_dict = torch.load(self.args.pretrained_path)
self.model.load_state_dict(pretrained_dict)
print("ImageNet pretrained weights loaded successfully.\n")
except:
print("No ImageNet pretrained weights exist. Skipping...\n")
def load_checkpoint(self, filename):
filename = self.args.checkpoint_dir + filename
try:
print("Loading checkpoint '{}'".format(filename))
checkpoint = torch.load(filename)
self.start_epoch = checkpoint['epoch']
self.best_top1 = checkpoint['best_top1']
self.model.load_state_dict(checkpoint['state_dict'])
self.optimizer.load_state_dict(checkpoint['optimizer'])
print("Checkpoint loaded successfully from '{}' at (epoch {})\n"
.format(self.args.checkpoint_dir, checkpoint['epoch']))
except:
print("No checkpoint exists from '{}'. Skipping...\n".format(self.args.checkpoint_dir))
Mobile-Net v2 netscope : http://ethereon.github.io/netscope/#/gist/d01b5b8783b4582a42fe07bd46243986
Pytorch与caffe实现的Mobile-Net v2 不完全一样
1. 在caffe中,每一个block的前面几个单元采用跳跃连接,stride = 1,最后一个单元不采用跳跃链接,stride = 2
2. 在pytorch中,相反。
现在来说说Mobile-Net v2的特点:
- 在正常的残差单元,depth_bottleneck = inchannel / 4,而inverted residual unit的 depth_bottleneck = inchannel * 6,具体件论文;
- 在通道减小的卷积层中不采用非线性激活函数(ReLU6)