- 视觉SLAM十四讲学习笔记——第十讲 后端优化(2)
晒月光12138
视觉SLAM十四讲学习笔记slamubuntu
上文提到考虑全局的后端优化计算量非常大,因此在计算增量方程时,借助H矩阵的稀疏性加速运算。但是随着时间的推移,累积的相机位姿和路标数量还是会导致计算量过大,以上一节的示例代码数据为例:16张图像,共提取到22106个特征点,这些特征点共出现了83718次。对于一个20Hz更新速度,上述的数据量甚至还不到1s的内容,因此在求解大规模定位建图问题时,一定要控制BA的规模。这里主要有两种解决思路:(1)
- 视觉slam十四讲学习笔记(六)视觉里程计 1
苦瓜汤补钙
视觉SLAM十四讲笔记机器学习ubuntu
本文关注基于特征点方式的视觉里程计算法。将介绍什么是特征点,如何提取和匹配特征点,以及如何根据配对的特征点估计相机运动。目录前言一、特征点法1特征点2ORB特征FAST关键点BRIEF描述子3特征匹配二、实践:特征提取和匹配三、2D-2D:对极几何1对极约束2本质矩阵3单应矩阵四、实践:对极约束求解相机运动五、三角测量总结前言1.理解图像特征点的意义,并掌握在单幅图像中提取出特征点,及多幅图像中匹
- 视觉SLAM十四讲学习笔记——第五讲 相机与图像
晒月光12138
视觉SLAM十四讲学习笔记自动驾驶计算机视觉人工智能
这一讲主要内容就是了解摄像机的成像模型以及OpenCV的使用。1.四种坐标系坐标系基本描述世界坐标系因为摄像机和物体可以随便摆放在空间中的任何位置,所以我们必须用一个固定的坐标系来描述空间中任何物体的位置和摄像机的位置和朝向,这个基准坐标系我们称之为世界坐标系。在计算机视觉中,我们通常把世界坐标系定义为摄像机坐标系或者所观测的物体的中心。摄像机坐标系摄像机坐标系的原点是摄像机的光心,X、Y轴分别平
- 视觉slam十四讲学习笔记(四)相机与图像
苦瓜汤补钙
视觉SLAM十四讲笔记相机机器学习
理解理解针孔相机的模型、内参与径向畸变参数。理解一个空间点是如何投影到相机成像平面的。掌握OpenCV的图像存储与表达方式。学会基本的摄像头标定方法。目录前言一、相机模型1针孔相机模型2畸变单目相机的成像过程3双目相机模型4RGB-D相机模型二、图像计算机中图像的表示三、图像的存取与访问1安装OpenCV2存取与访问总结前言前面介绍了“机器人如何表示自身位姿”的问题,部分地解释了SLAM经典模型中
- ORB-SLAM3运行自制数据集进行定位教程
极客范儿
ORB-SLAM━═━═━◥MR◤━═━═━IMUORB-SLAM3
目前手上有一个特定的任务,做应急救援的视觉SLAM,目前公共数据集比较少,考虑自建数据集,从网络上爬虫火灾、地震的等手机录制的视屏,应用一些现有成熟ORB-SLAM3系统到这个数据集上看效果,然后根据效果得到一些模型改进思路。文章目录一、系统配置二、制作数据集1、脚本编写2、配置文件编写3、录制视频素材4、修改CMakeLists.txt5、编译运行一、系统配置系统版本ubuntu20.04Ope
- 视觉SLAM十四讲学习笔记(二)三维空间刚体
苦瓜汤补钙
视觉SLAM十四讲笔记计算机视觉算法
哔哩哔哩课程连接:视觉SLAM十四讲ch3_哔哩哔哩_bilibili目录一、旋转矩阵1点、向量、坐标系2坐标系间的欧氏变换3变换矩阵与齐次坐标二、实践:Eigen(1)运行报错记录与解决三、旋转向量和欧拉角1旋转向量2欧拉角四、四元数1四元数的定义2四元数的运算3用四元数表示旋转4四元数到旋转矩阵的转换五、实践:Eigen(2)useGeometryvisualizeGeometry总结前言问题
- 视觉slam十四讲学习笔记(三)李群与李代数
苦瓜汤补钙
视觉SLAM十四讲笔记人工智能学习
1.理解李群与李代数的概念,掌握SO(3),SE(3)与对应李代数的表示方式。2.理解BCH近似的意义。3.学会在李代数上的扰动模型。4.使用Sophus对李代数进行运算。目录前言一、李群李代数基础1群2李代数的引出3李代数的定义4李代数so(3)5李代数se(3)二、指数与对数映射1SO(3)上的指数映射2SE(3)上的指数映射三、李代数求导与扰动模型1BCH公式与近似形式2SO(3)李代数上的
- 视觉SLAM十四讲学习笔记(一)初识SLAM
苦瓜汤补钙
计算机视觉人工智能
目录前言一、传感器1传感器分类2相机二、经典视觉SLAM框架1视觉里程计2后端优化3回环检测4建图5SLAM系统三、SLAM问题的数学表述四、Ubuntu20.04配置SLAM十四讲前言SLAM:SimultaneousLocalizationandMapping同时定位与地图构建(建图)。搭载特定传感器的主体,在没有环境先验信息的情况下,于运动过程中建立环地的模型。同时储计自己的运动。视觉SLA
- 【SLAM14讲编译依赖软件源码版本方面等问题汇总】
终问鼎
自动驾驶-SLAMc++自动驾驶buglinuxubuntu
"逆转鹈鹕”0.视觉SLAM十四讲1.ch3-------Eigen32.ch4-------Sophus2.ch5-------JoinMap3.ch63.1---ceres3.2---g2o4.ch7--视觉里程计5.--ch8associate.py6.--ch9project以下是本人在学习SLAM中遇到的全部问题汇总(主要是依赖和软件方面的)。0.视觉SLAM十四讲1.ch3------
- 《视觉SLAM十四讲》第九讲前段实践中g2o实践代码报错解决方法
大二哈
在《视觉SLAM十四讲》中针对于g2o初始化部分代码是无法执行的,在高博的Git上的代码也是无法编译的,会报错:error:nomatchingfunctionforcallto‘g2o::BlockSolver>::BlockSolver(g2o::BlockSolver>::LinearSolverType*&)’定位报错的代码段如下:typedefg2o::BlockSolver>Block
- 计算机视觉中的Homography单应矩阵应用小结
CS_Zero
SLAM计算机视觉CV计算机视觉slam几何学
计算机视觉中的Homography(单应)矩阵应用小结Homography矩阵在StructurefromMotion(SfM)或三维重建、视觉SLAM的初始化过程有着重要应用,本文总结了单应矩阵出现场景与常见问题求解。文章目录计算机视觉中的Homography(单应)矩阵应用小结单应矩阵的推导单应矩阵的求解与分解位姿问题单应矩阵的推导一般地,单应模型出现的前提条件是空间点分布在同一个平面上,例外
- 【视觉SLAM十四讲学习笔记】第六讲——状态估计问题
趴抖
视觉SLAM十四讲学习笔记笔记SLAM
专栏系列文章如下:【视觉SLAM十四讲学习笔记】第一讲——SLAM介绍【视觉SLAM十四讲学习笔记】第二讲——初识SLAM【视觉SLAM十四讲学习笔记】第三讲——旋转矩阵【视觉SLAM十四讲学习笔记】第三讲——旋转向量和欧拉角【视觉SLAM十四讲学习笔记】第三讲——四元数【视觉SLAM十四讲学习笔记】第三讲——Eigen库【视觉SLAM十四讲学习笔记】第四讲——李群与李代数基础【视觉SLAM十四讲
- 【视觉SLAM十四讲学习笔记】第六讲——非线性最小二乘
趴抖
视觉SLAM十四讲学习笔记笔记SLAM
专栏系列文章如下:【视觉SLAM十四讲学习笔记】第一讲——SLAM介绍【视觉SLAM十四讲学习笔记】第二讲——初识SLAM【视觉SLAM十四讲学习笔记】第三讲——旋转矩阵【视觉SLAM十四讲学习笔记】第三讲——旋转向量和欧拉角【视觉SLAM十四讲学习笔记】第三讲——四元数【视觉SLAM十四讲学习笔记】第三讲——Eigen库【视觉SLAM十四讲学习笔记】第四讲——李群与李代数基础【视觉SLAM十四讲
- INDEMIND双目惯性模组运行实时ORB-SLAM3教程
极客范儿
ORB-SLAM━═━═━◥MR◤━═━═━ORB-SLAM3INDEMINDROSubuntu20.04imu
现在实验室视觉SLAM已经不够满足,所以需要多模态融合,正巧购入高翔博士推荐的INDEMIND双目惯性模组,根据官方例程在中使用ROS接入ORB-SLAM3,这回有SDK及ORB-SLAM3安装过程中的各种常见性问题解决方法及安装细节,与官网教程略有不同,列举所有默认安装的依赖,做以记录。文章目录实验环境一、SDK安装1、SDK下载及准备安装2、安装依赖3、然后使用git下载SDK4、准备安装SD
- 科普类(双目视觉)——快速索引
JANGHIGH
科普类无人驾驶快速索引自动驾驶
科普类(双目视觉)——快速索引科普类——双目视觉在无人驾驶汽车中的应用(一)科普类——双目视觉SLAM在无人驾驶汽车中的作用(二)科普类——双目视觉在自动驾驶中存在的问题、挑战以及解决方案(三)科普类——双目视觉系统在无人驾驶汽车中的安装位置(四)科普类——基线的设计对于系统的性能的直接影响(五)科普类——百度Apollo使用的双目系统的硬件型号(六)科普类——进行基线设计、系统测试和优化的立体视
- 科普类——双目视觉SLAM在无人驾驶汽车中的作用(二)
JANGHIGH
科普类无人驾驶汽车人工智能
科普类——双目视觉SLAM在无人驾驶汽车中的作用(二)在无人驾驶汽车中,视觉SLAM(SimultaneousLocalizationandMapping,即同时定位与地图构建)是一种关键技术,它允许车辆在未知环境中进行自我定位和地图构建。双目视觉系统在视觉SLAM中的应用起到了以下作用:精确定位:双目视觉系统通过计算两幅图像之间的视差,可以提供精确的深度信息。这些信息有助于SLAM算法更准确地估
- 【ORB-SLAM2源码梳理1】以单目mono_tum.cc为例,构建SLAM系统(含mono_tum.cc、System.cc关键代码解析)
Jay_z在造梦
ORB-SLAM2c++slamorb
文章目录前言一、进入mono_tum.cc1.导入TUM数据集图片:LoadImages()2.构建SLAM系统:System3.系统构建结束,开启跟踪线程1)一帧帧地读取对应路径下的rgb图像:2)将图像帧传入Tracking线程,开始一系列操作(关键):二、代码导图前言因为对于视觉SLAM而言,单目涉及初始化等步骤,相对于双目和RGBD较为复杂,故从单目学起。学习记录。一、进入mono_tum
- 手把手带你死磕ORBSLAM3源代码(六十四) LocalMapping.cc LocalMapping Run
安城安
数据库服务器网络运维vimlinuxc语言
目录一.前言二.代码2.1完整代码一.前言以下是对该方法功能的详细解释:mbFinished被设置为false,表示局部映射过程尚未完成。方法进入一个无限循环,这是因为在视觉SLAM中,局部映射是一个持续进行的过程,需要不断地处理新的关键帧和地图点。通过调用SetAcceptKeyFrames(false)方法,局部映射告诉追踪器(Tracker)它目前正在忙,不应该接受新的关键帧。这是为了确保局
- 视觉SLAM十四讲|【四】误差Jacobian推导
影子鱼Alexios
algorithm机器学习机器人
视觉SLAM十四讲|【四】误差Jacobian推导预积分误差递推公式ω=12((ωbk+nkg−bkg)+(wbk+1+nk+1g−bk+1g))\omega=\frac{1}{2}((\omega_b^k+n_k^g-b_k^g)+(w_b^{k+1}+n_{k+1}^g-b_{k+1}^g))ω=21((ωbk+nkg−bkg)+(wbk+1+nk+1g−bk+1g))其中,wbkw_b^kw
- 视觉SLAM十四讲|【六】基于特征匀速模型的重投影误差计算形式
影子鱼Alexios
algorithm控制理论机器学习机器人人工智能
视觉SLAM十四讲|【六】基于特征匀速模型的重投影误差计算形式基本推导方法无时间戳延迟时,残差计算流程:世界坐标系中的第lll个地图点变换到相机坐标系下为flw=[x,y,z]Tf_l^w=[x,y,z]^Tflw=[x,y,z]T变换到相机坐标系下为flci=RcbRwbiT(flw−pwbi)+pcbf_l^{c_i}=R_{cb}R_{wb_i}^T(f_l^w-p_{wb_i})+p_{c
- 《SLAM十四讲》Ch7编译报错
Prejudices
SLAMSLAM
《SLAM十四讲》Ch7编译报错原因:视觉SLAM书上的程序使用的g2o版本比较旧了,使用的是c++11版本的g2o。而自己在编译g2o的时候编译的是最新版本的g2o,里面大量使用了c++14标准库的一些新特性,比如std::index_sequence等等。而书上的CMakeLists.txt默认使用的是c++11进行cmake编译,所以报错解决:CMakeLists.txt中更改如下:set(
- openvslam------slam解读系列
xiechaoyi123
SLAM系列slamoptimization
是什么:openvslam是日本先进工业科技研究(NationalInstituteofAdvancedIndustrialScienceandTechnology)所于2019年5月20日开源的视觉SLAM框架;github源码地址:https://github.com/xdspacelab/openvslam干什么的:先上图:通过不同类型的相机(单目,双目,RGBD,鱼眼或者全景相机)拍摄的序
- ORB_SLAM3:IMU初始化过程梳理以及自己的理解
追风筝的人~TH
ORB_SLAM3计算机视觉人工智能c++
LocalMapping线程中IMU初始化:1、为什么要进行初始化?因为无法保证世界坐标系(单目初始化参考关键帧)的Z轴正好与重力方向平行,二者有角度,计算该角度的过程就是IMU初始化的过程。2、IMU初始化过程中不断优化尺度,在单目相机的视觉SLAM中,尺度指的是场景中真实物体的物理尺寸与它在相机图像中所对应的像素距离之间的比例关系。在视觉SLAM中,尺度是一个非常重要的概念,因为它决定了相机观
- 第一个项目总结:双目测距(python代码转为c++代码,最终输出点云图,再转为ros点云图,再实现可视化)
zerogin+
c++opencv开发语言
目录1.双目成像原理2.双目测距python代码3.python代码转为c++代码(1)双目相机参数(2)立体校正(3)立体匹配4.opencv的点云图转为ros点云图1.双目成像原理摘自《视觉SLAM十四讲》2.双目测距python代码(46条消息)双目测距理论及其python实现_python双目测距_javastart的博客-CSDN博客具体过程为:双目标定-->立体校正(含消除畸变)-->
- SLAM中的二进制词袋生成过程和工作原理
深蓝学院
机器学习人工智能
长期视觉SLAM(SimultaneousLocalizationandMapping)最重要的要求之一是鲁棒的位置识别。经过一段探索期后,当长时间未观测到的区域重新观测时,标准匹配算法失效。当它们被健壮地检测到时,回环检测提供正确的数据关联以获得一致的地图。用于环路检测的相同方法可用于机器人在轨迹丢失后的重新定位,例如由于突然运动,严重闭塞或运动模糊。词袋的基本技术包括从机器人在线收集的图像中建
- 【视觉SLAM十四讲学习笔记】第五讲——相机模型
趴抖
视觉SLAM十四讲学习笔记笔记SLAM
专栏系列文章如下:【视觉SLAM十四讲学习笔记】第一讲——SLAM介绍【视觉SLAM十四讲学习笔记】第二讲——初识SLAM【视觉SLAM十四讲学习笔记】第三讲——旋转矩阵【视觉SLAM十四讲学习笔记】第三讲——旋转向量和欧拉角【视觉SLAM十四讲学习笔记】第三讲——四元数【视觉SLAM十四讲学习笔记】第三讲——Eigen库【视觉SLAM十四讲学习笔记】第四讲——李群与李代数基础【视觉SLAM十四讲
- 2023-01-04日志
独孤西
今天学习了惯导的一节课与视觉SLAM视觉里程计的部分知识。惯性导航方面,主要学习了加速度计和陀螺的基本实现原理,了解了不同类型的惯性传感器,区分ISA、IMU、INS,知道了平台式与捷联式的区别,对惯导的精度等级分类也有了了解,并对惯导发展历史进行了学习。视觉里程计方面,主要学习了ORB特征点法的工作原理,了解了对极几何的原理,对视觉里程计的2D-2D估计过程有了更全面的了解。视觉SLAM的数学原
- 视觉SLAM十四讲|【五】相机与IMU时间戳同步
影子鱼Alexios
机器人机器学习
视觉SLAM十四讲|【五】相机与IMU时间戳同步相机成像方程Z[uv1]=[fx0cx0fycy001][XYZ]=KPZ\begin{bmatrix}u\\v\\1\end{bmatrix}=\begin{bmatrix}f_x&0&c_x\\0&f_y&c_y\\0&0&1\end{bmatrix}\begin{bmatrix}X\\Y\\Z\end{bmatrix}=KPZuv1=fx000
- 视觉SALM与激光SLAM的区别
Jiqiang_z
LOAM系列阅读笔记SLAM学习笔记机器学习人工智能深度学习
前言:这里比较一下视觉SLAM和激光SLAM的区别,仅比较其在算法层面上的一些不同,这里拿视觉SLAM算法:ORB-SLAM系列和激光SLAM算法:LOAM系列对比。一:特征提取1.ORB-SLAM(视觉SLAM)ORB-SLAM算法采用ORB特征点,ORB特征点一般提取在角点上面,每一个ORB特征点具有以下信息:位置信息:该ORB特征点所在的图像像素坐标。描述子信息:用来描述该特征点的周围信息。
- 视觉SLAM和激光SLAM适合的应用领域以及哪个更有前景
稻壳特筑
SLAMSLAM
目录视觉SLAM的应用领域激光SLAM的应用领域视觉SLAM优势和局限性激光SLAM优势和局限性发展趋势和前景视觉SLAM的应用领域增强现实(AR)和虚拟现实(VR):视觉SLAM能够提供丰富的视觉信息,有助于在现实世界中叠加虚拟图像,适用于AR眼镜和VR头显。消费电子产品:在智能手机、平板电脑等设备上,视觉SLAM可以用于室内导航、三维建模和交互游戏。机器人:小型或成本敏感的机器人,如家用清洁机
- 多线程编程之卫生间
周凡杨
java并发卫生间线程厕所
如大家所知,火车上车厢的卫生间很小,每次只能容纳一个人,一个车厢只有一个卫生间,这个卫生间会被多个人同时使用,在实际使用时,当一个人进入卫生间时则会把卫生间锁上,等出来时打开门,下一个人进去把门锁上,如果有一个人在卫生间内部则别人的人发现门是锁的则只能在外面等待。问题分析:首先问题中有两个实体,一个是人,一个是厕所,所以设计程序时就可以设计两个类。人是多数的,厕所只有一个(暂且模拟的是一个车厢)。
- How to Install GUI to Centos Minimal
sunjing
linuxInstallDesktopGUI
http://www.namhuy.net/475/how-to-install-gui-to-centos-minimal.html
I have centos 6.3 minimal running as web server. I’m looking to install gui to my server to vnc to my server. You can insta
- Shell 函数
daizj
shell函数
Shell 函数
linux shell 可以用户定义函数,然后在shell脚本中可以随便调用。
shell中函数的定义格式如下:
[function] funname [()]{
action;
[return int;]
}
说明:
1、可以带function fun() 定义,也可以直接fun() 定义,不带任何参数。
2、参数返回
- Linux服务器新手操作之一
周凡杨
Linux 简单 操作
1.whoami
当一个用户登录Linux系统之后,也许他想知道自己是发哪个用户登录的。
此时可以使用whoami命令。
[ecuser@HA5-DZ05 ~]$ whoami
e
- 浅谈Socket通信(一)
朱辉辉33
socket
在java中ServerSocket用于服务器端,用来监听端口。通过服务器监听,客户端发送请求,双方建立链接后才能通信。当服务器和客户端建立链接后,两边都会产生一个Socket实例,我们可以通过操作Socket来建立通信。
首先我建立一个ServerSocket对象。当然要导入java.net.ServerSocket包
ServerSock
- 关于框架的简单认识
西蜀石兰
框架
入职两个月多,依然是一个不会写代码的小白,每天的工作就是看代码,写wiki。
前端接触CSS、HTML、JS等语言,一直在用的CS模型,自然免不了数据库的链接及使用,真心涉及框架,项目中用到的BootStrap算一个吧,哦,JQuery只能算半个框架吧,我更觉得它是另外一种语言。
后台一直是纯Java代码,涉及的框架是Quzrtz和log4j。
都说学前端的要知道三大框架,目前node.
- You have an error in your SQL syntax; check the manual that corresponds to your
林鹤霄
You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near 'option,changed_ids ) values('0ac91f167f754c8cbac00e9e3dc372
- MySQL5.6的my.ini配置
aigo
mysql
注意:以下配置的服务器硬件是:8核16G内存
[client]
port=3306
[mysql]
default-character-set=utf8
[mysqld]
port=3306
basedir=D:/mysql-5.6.21-win
- mysql 全文模糊查找 便捷解决方案
alxw4616
mysql
mysql 全文模糊查找 便捷解决方案
2013/6/14 by 半仙
[email protected]
目的: 项目需求实现模糊查找.
原则: 查询不能超过 1秒.
问题: 目标表中有超过1千万条记录. 使用like '%str%' 进行模糊查询无法达到性能需求.
解决方案: 使用mysql全文索引.
1.全文索引 : MySQL支持全文索引和搜索功能。MySQL中的全文索
- 自定义数据结构 链表(单项 ,双向,环形)
百合不是茶
单项链表双向链表
链表与动态数组的实现方式差不多, 数组适合快速删除某个元素 链表则可以快速的保存数组并且可以是不连续的
单项链表;数据从第一个指向最后一个
实现代码:
//定义动态链表
clas
- threadLocal实例
bijian1013
javathreadjava多线程threadLocal
实例1:
package com.bijian.thread;
public class MyThread extends Thread {
private static ThreadLocal tl = new ThreadLocal() {
protected synchronized Object initialValue() {
return new Inte
- activemq安全设置—设置admin的用户名和密码
bijian1013
javaactivemq
ActiveMQ使用的是jetty服务器, 打开conf/jetty.xml文件,找到
<bean id="adminSecurityConstraint" class="org.eclipse.jetty.util.security.Constraint">
<p
- 【Java范型一】Java范型详解之范型集合和自定义范型类
bit1129
java
本文详细介绍Java的范型,写一篇关于范型的博客原因有两个,前几天要写个范型方法(返回值根据传入的类型而定),竟然想了半天,最后还是从网上找了个范型方法的写法;再者,前一段时间在看Gson, Gson这个JSON包的精华就在于对范型的优雅简单的处理,看它的源代码就比较迷糊,只其然不知其所以然。所以,还是花点时间系统的整理总结下范型吧。
范型内容
范型集合类
范型类
- 【HBase十二】HFile存储的是一个列族的数据
bit1129
hbase
在HBase中,每个HFile存储的是一个表中一个列族的数据,也就是说,当一个表中有多个列簇时,针对每个列簇插入数据,最后产生的数据是多个HFile,每个对应一个列族,通过如下操作验证
1. 建立一个有两个列族的表
create 'members','colfam1','colfam2'
2. 在members表中的colfam1中插入50*5
- Nginx 官方一个配置实例
ronin47
nginx 配置实例
user www www;
worker_processes 5;
error_log logs/error.log;
pid logs/nginx.pid;
worker_rlimit_nofile 8192;
events {
worker_connections 4096;}
http {
include conf/mim
- java-15.输入一颗二元查找树,将该树转换为它的镜像, 即在转换后的二元查找树中,左子树的结点都大于右子树的结点。 用递归和循环
bylijinnan
java
//use recursion
public static void mirrorHelp1(Node node){
if(node==null)return;
swapChild(node);
mirrorHelp1(node.getLeft());
mirrorHelp1(node.getRight());
}
//use no recursion bu
- 返回null还是empty
bylijinnan
javaapachespring编程
第一个问题,函数是应当返回null还是长度为0的数组(或集合)?
第二个问题,函数输入参数不当时,是异常还是返回null?
先看第一个问题
有两个约定我觉得应当遵守:
1.返回零长度的数组或集合而不是null(详见《Effective Java》)
理由就是,如果返回empty,就可以少了很多not-null判断:
List<Person> list
- [科技与项目]工作流厂商的战略机遇期
comsci
工作流
在新的战略平衡形成之前,这里有一个短暂的战略机遇期,只有大概最短6年,最长14年的时间,这段时间就好像我们森林里面的小动物,在秋天中,必须抓紧一切时间存储坚果一样,否则无法熬过漫长的冬季。。。。
在微软,甲骨文,谷歌,IBM,SONY
- 过度设计-举例
cuityang
过度设计
过度设计,需要更多设计时间和测试成本,如无必要,还是尽量简洁一些好。
未来的事情,比如 访问量,比如数据库的容量,比如是否需要改成分布式 都是无法预料的
再举一个例子,对闰年的判断逻辑:
1、 if($Year%4==0) return True; else return Fasle;
2、if ( ($Year%4==0 &am
- java进阶,《Java性能优化权威指南》试读
darkblue086
java性能优化
记得当年随意读了微软出版社的.NET 2.0应用程序调试,才发现调试器如此强大,应用程序开发调试其实真的简单了很多,不仅仅是因为里面介绍了很多调试器工具的使用,更是因为里面寻找问题并重现问题的思想让我震撼,时隔多年,Java已经如日中天,成为许多大型企业应用的首选,而今天,这本《Java性能优化权威指南》让我再次找到了这种感觉,从不经意的开发过程让我刮目相看,原来性能调优不是简单地看看热点在哪里,
- 网络学习笔记初识OSI七层模型与TCP协议
dcj3sjt126com
学习笔记
协议:在计算机网络中通信各方面所达成的、共同遵守和执行的一系列约定 计算机网络的体系结构:计算机网络的层次结构和各层协议的集合。 两类服务: 面向连接的服务通信双方在通信之前先建立某种状态,并在通信过程中维持这种状态的变化,同时为服务对象预先分配一定的资源。这种服务叫做面向连接的服务。 面向无连接的服务通信双方在通信前后不建立和维持状态,不为服务对象
- mac中用命令行运行mysql
dcj3sjt126com
mysqllinuxmac
参考这篇博客:http://www.cnblogs.com/macro-cheng/archive/2011/10/25/mysql-001.html 感觉workbench不好用(有点先入为主了)。
1,安装mysql
在mysql的官方网站下载 mysql 5.5.23 http://www.mysql.com/downloads/mysql/,根据我的机器的配置情况选择了64
- MongDB查询(1)——基本查询[五]
eksliang
mongodbmongodb 查询mongodb find
MongDB查询
转载请出自出处:http://eksliang.iteye.com/blog/2174452 一、find简介
MongoDB中使用find来进行查询。
API:如下
function ( query , fields , limit , skip, batchSize, options ){.....}
参数含义:
query:查询参数
fie
- base64,加密解密 经融加密,对接
y806839048
经融加密对接
String data0 = new String(Base64.encode(bo.getPaymentResult().getBytes(("GBK"))));
String data1 = new String(Base64.decode(data0.toCharArray()),"GBK");
// 注意编码格式,注意用于加密,解密的要是同
- JavaWeb之JSP概述
ihuning
javaweb
什么是JSP?为什么使用JSP?
JSP表示Java Server Page,即嵌有Java代码的HTML页面。使用JSP是因为在HTML中嵌入Java代码比在Java代码中拼接字符串更容易、更方便和更高效。
JSP起源
在很多动态网页中,绝大部分内容都是固定不变的,只有局部内容需要动态产生和改变。
如果使用Servl
- apple watch 指南
啸笑天
apple
1. 文档
WatchKit Programming Guide(中译在线版 By @CocoaChina) 译文 译者 原文 概览 - 开始为 Apple Watch 进行开发 @星夜暮晨 Overview - Developing for Apple Watch 概览 - 配置 Xcode 项目 - Overview - Configuring Yo
- java经典的基础题目
macroli
java编程
1.列举出 10个JAVA语言的优势 a:免费,开源,跨平台(平台独立性),简单易用,功能完善,面向对象,健壮性,多线程,结构中立,企业应用的成熟平台, 无线应用 2.列举出JAVA中10个面向对象编程的术语 a:包,类,接口,对象,属性,方法,构造器,继承,封装,多态,抽象,范型 3.列举出JAVA中6个比较常用的包 Java.lang;java.util;java.io;java.sql;ja
- 你所不知道神奇的js replace正则表达式
qiaolevip
每天进步一点点学习永无止境纵观千象regex
var v = 'C9CFBAA3CAD0';
console.log(v);
var arr = v.split('');
for (var i = 0; i < arr.length; i ++) {
if (i % 2 == 0) arr[i] = '%' + arr[i];
}
console.log(arr.join(''));
console.log(v.r
- [一起学Hive]之十五-分析Hive表和分区的统计信息(Statistics)
superlxw1234
hivehive分析表hive统计信息hive Statistics
关键字:Hive统计信息、分析Hive表、Hive Statistics
类似于Oracle的分析表,Hive中也提供了分析表和分区的功能,通过自动和手动分析Hive表,将Hive表的一些统计信息存储到元数据中。
表和分区的统计信息主要包括:行数、文件数、原始数据大小、所占存储大小、最后一次操作时间等;
14.1 新表的统计信息
对于一个新创建
- Spring Boot 1.2.5 发布
wiselyman
spring boot
Spring Boot 1.2.5已在7月2日发布,现在可以从spring的maven库和maven中心库下载。
这个版本是一个维护的发布版,主要是一些修复以及将Spring的依赖提升至4.1.7(包含重要的安全修复)。
官方建议所有的Spring Boot用户升级这个版本。
项目首页 | 源