概述
决策树(Decision Tree)算法主要用来处理分类问题,是最经常使用的数据挖掘算法之一。
基于信息论的决策树算法有ID3、CART和C4.5等算法,其中C4.5和CART两种算法从ID3算法中衍生而来。
CART和C4.5支持数据特征为连续分布时的处理,主要通过使用二元切分来处理连续型变量,即求一个特定的值-分裂值:特征值大于分裂值就走左子树,或者就走右子树。这个分裂值的选取的原则是使得划分后的子树中的“混乱程度”降低,具体到C4.5和CART算法则有不同的定义方式。
ID3算法由Ross Quinlan发明,建立在“奥卡姆剃刀”的基础上:越是小型的决策树越优于大的决策树(be simple简单理论)。ID3算法中根据信息论的信息增益评估和选择特征,每次选择信息增益最大的特征做判断模块。ID3算法可用于划分标称型数据集,没有剪枝的过程,为了去除过度数据匹配的问题,可通过裁剪合并相邻的无法产生大量信息增益的叶子节点(例如设置信息增益阀值)。使用信息增益的话其实是有一个缺点,那就是它偏向于具有大量值的属性--就是说在训练集中,某个属性所取的不同值的个数越多,那么越有可能拿它来作为分裂属性,而这样做有时候是没有意义的,另外ID3不能处理连续分布的数据特征,于是就有了C4.5算法。CART算法也支持连续分布的数据特征。
C4.5是ID3的一个改进算法,继承了ID3算法的优点。C4.5算法用信息增益率来选择属性,克服了用信息增益选择属性时偏向选择取值多的属性的不足在树构造过程中进行剪枝;能够完成对连续属性的离散化处理;能够对不完整数据进行处理。C4.5算法产生的分类规则易于理解、准确率较高;但效率低,因树构造过程中,需要对数据集进行多次的顺序扫描和排序。也是因为必须多次数据集扫描,C4.5只适合于能够驻留于内存的数据集。
CART算法的全称是Classification And Regression Tree,采用的是Gini指数(选Gini指数最小的特征s)作为分裂标准,同时它也是包含后剪枝操作。ID3算法和C4.5算法虽然在对训练样本集的学习中可以尽可能多地挖掘信息,但其生成的决策树分支较大,规模较大。为了简化决策树的规模,提高生成决策树的效率,就出现了根据GINI系数来选择测试属性的决策树算法CART。
一个叫做 "二十个问题" 的游戏,游戏的规则很简单:参与游戏的一方在脑海中想某个事物,其他参与者向他提问,只允许提 20 个问题,问题的答案也只能用对或错回答。问问题的人通过推断分解,逐步缩小待猜测事物的范围,最后得到游戏的答案。
一个邮件分类系统,大致工作流程如下:
首先检测发送邮件域名地址。如果地址为 myEmployer.com, 则将其放在分类 "无聊时需要阅读的邮件"中。
如果邮件不是来自这个域名,则检测邮件内容里是否包含单词 "曲棍球" , 如果包含则将邮件归类到 "需要及时处理的朋友邮件",
如果不包含则将邮件归类到 "无需阅读的垃圾邮件" 。
信息熵 & 信息增益
熵: 熵(entropy)指的是体系的混乱的程度,在不同的学科中也有引申出的更为具体的定义,是各领域十分重要的参量。
信息熵(香农熵): 是一种信息的度量方式,表示信息的混乱程度,也就是说:信息越有序,信息熵越低。例如:火柴有序放在火柴盒里,熵值很低,相反,熵值很高。
信息增益: 在划分数据集前后信息发生的变化称为信息增益。
如何构造一个决策树?
我们使用 createBranch() 方法,如下所示:
检测数据集中的所有数据的分类标签是否相同:
If so return 类标签
Else:
寻找划分数据集的最好特征(划分之后信息熵最小,也就是信息增益最大的特征)
划分数据集
创建分支节点
for 每个划分的子集
调用函数 createBranch (创建分支的函数)并增加返回结果到分支节点中
return 分支节点
收集数据:可以使用任何方法。
准备数据:树构造算法只适用于标称型数据,因此数值型数据必须离散化。
分析数据:可以使用任何方法,构造树完成之后,我们应该检查图形是否符合预期。
训练算法:构造树的数据结构。
测试算法:使用经验树计算错误率。(经验树没有搜索到较好的资料,有兴趣的同学可以来补充)
使用算法:此步骤可以适用于任何监督学习算法,而使用决策树可以更好地理解数据的内在含义。
优点:计算复杂度不高,输出结果易于理解,对中间值的缺失不敏感,可以处理不相关特征数据。
缺点:可能会产生过度匹配问题。
适用数据类型:数值型和标称型。
项目概述
根据以下 2 个特征,将动物分成两类:鱼类和非鱼类。
特征:
开发流程
收集数据:可以使用任何方法
准备数据:树构造算法只适用于标称型数据,因此数值型数据必须离散化
分析数据:可以使用任何方法,构造树完成之后,我们应该检查图形是否符合预期
训练算法:构造树的数据结构
测试算法:使用决策树执行分类
使用算法:此步骤可以适用于任何监督学习算法,而使用决策树可以更好地理解数据的内在含义
收集数据:可以使用任何方法
我们利用 createDataSet() 函数输入数据
def createDataSet(): dataSet = [[1, 1, 'yes'], [1, 1, 'yes'], [1, 0, 'no'], [0, 1, 'no'], [0, 1, 'no']] labels = ['no surfacing', 'flippers'] return dataSet, labels
准备数据:树构造算法只适用于标称型数据,因此数值型数据必须离散化
此处,由于我们输入的数据本身就是离散化数据,所以这一步就省略了。
分析数据:可以使用任何方法,构造树完成之后,我们应该检查图形是否符合预期
计算给定数据集的香农熵的函数
def calcShannonEnt(dataSet): # 求list的长度,表示计算参与训练的数据量 numEntries = len(dataSet) # 计算分类标签label出现的次数 labelCounts = {} # the the number of unique elements and their occurance for featVec in dataSet: # 将当前实例的标签存储,即每一行数据的最后一个数据代表的是标签 currentLabel = featVec[-1] # 为所有可能的分类创建字典,如果当前的键值不存在,则扩展字典并将当前键值加入字典。每个键值都记录了当前类别出现的次数。 if currentLabel not in labelCounts.keys(): labelCounts[currentLabel] = 0 labelCounts[currentLabel] += 1 # 对于 label 标签的占比,求出 label 标签的香农熵 shannonEnt = 0.0 for key in labelCounts: # 使用所有类标签的发生频率计算类别出现的概率。 prob = float(labelCounts[key])/numEntries # 计算香农熵,以 2 为底求对数 shannonEnt -= prob * log(prob, 2) return shannonEnt
按照给定特征划分数据集
将指定特征的特征值等于 value 的行剩下列作为子数据集。
def splitDataSet(dataSet, index, value): """splitDataSet(通过遍历dataSet数据集,求出index对应的colnum列的值为value的行) 就是依据index列进行分类,如果index列的数据等于 value的时候,就要将 index 划分到我们创建的新的数据集中 Args: dataSet 数据集 待划分的数据集 index 表示每一行的index列 划分数据集的特征 value 表示index列对应的value值 需要返回的特征的值。 Returns: index列为value的数据集【该数据集需要排除index列】 """ retDataSet = [] for featVec in dataSet: # index列为value的数据集【该数据集需要排除index列】 # 判断index列的值是否为value if featVec[index] == value: # chop out index used for splitting # [:index]表示前index行,即若 index 为2,就是取 featVec 的前 index 行 reducedFeatVec = featVec[:index] ''' 请百度查询一下: extend和append的区别 list.append(object) 向列表中添加一个对象object list.extend(sequence) 把一个序列seq的内容添加到列表中 1、使用append的时候,是将new_media看作一个对象,整体打包添加到music_media对象中。 2、使用extend的时候,是将new_media看作一个序列,将这个序列和music_media序列合并,并放在其后面。 result = [] result.extend([1,2,3]) print result result.append([4,5,6]) print result result.extend([7,8,9]) print result 结果: [1, 2, 3] [1, 2, 3, [4, 5, 6]] [1, 2, 3, [4, 5, 6], 7, 8, 9] ''' reducedFeatVec.extend(featVec[index+1:]) # [index+1:]表示从跳过 index 的 index+1行,取接下来的数据 # 收集结果值 index列为value的行【该行需要排除index列】 retDataSet.append(reducedFeatVec) return retDataSet
选择最好的数据集划分方式
def chooseBestFeatureToSplit(dataSet): """chooseBestFeatureToSplit(选择最好的特征) Args: dataSet 数据集 Returns: bestFeature 最优的特征列 """ # 求第一行有多少列的 Feature, 最后一列是label列嘛 numFeatures = len(dataSet[0]) - 1 # 数据集的原始信息熵 baseEntropy = calcShannonEnt(dataSet) # 最优的信息增益值, 和最优的Featurn编号 bestInfoGain, bestFeature = 0.0, -1 # iterate over all the features for i in range(numFeatures): # create a list of all the examples of this feature # 获取对应的feature下的所有数据 featList = [example[i] for example in dataSet] # get a set of unique values # 获取剔重后的集合,使用set对list数据进行去重 uniqueVals = set(featList) # 创建一个临时的信息熵 newEntropy = 0.0 # 遍历某一列的value集合,计算该列的信息熵 # 遍历当前特征中的所有唯一属性值,对每个唯一属性值划分一次数据集,计算数据集的新熵值,并对所有唯一特征值得到的熵求和。 for value in uniqueVals: subDataSet = splitDataSet(dataSet, i, value) # 计算概率 prob = len(subDataSet)/float(len(dataSet)) # 计算信息熵 newEntropy += prob * calcShannonEnt(subDataSet) # gain[信息增益]: 划分数据集前后的信息变化, 获取信息熵最大的值 # 信息增益是熵的减少或者是数据无序度的减少。最后,比较所有特征中的信息增益,返回最好特征划分的索引值。 infoGain = baseEntropy - newEntropy print 'infoGain=', infoGain, 'bestFeature=', i, baseEntropy, newEntropy if (infoGain > bestInfoGain): bestInfoGain = infoGain bestFeature = i return bestFeature
问:上面的 newEntropy 为什么是根据子集计算的呢?
答:因为我们在根据一个特征计算香农熵的时候,该特征的分类值是相同,这个特征这个分类的香农熵为 0;
这就是为什么计算新的香农熵的时候使用的是子集。
训练算法:构造树的数据结构
创建树的函数代码如下:
def createTree(dataSet, labels): classList = [example[-1] for example in dataSet] # 如果数据集的最后一列的第一个值出现的次数=整个集合的数量,也就说只有一个类别,就只直接返回结果就行 # 第一个停止条件:所有的类标签完全相同,则直接返回该类标签。 # count() 函数是统计括号中的值在list中出现的次数 if classList.count(classList[0]) == len(classList): return classList[0] # 如果数据集只有1列,那么最初出现label次数最多的一类,作为结果 # 第二个停止条件:使用完了所有特征,仍然不能将数据集划分成仅包含唯一类别的分组。 if len(dataSet[0]) == 1: return majorityCnt(classList) # 选择最优的列,得到最优列对应的label含义 bestFeat = chooseBestFeatureToSplit(dataSet) # 获取label的名称 bestFeatLabel = labels[bestFeat] # 初始化myTree myTree = {bestFeatLabel: {}} # 注:labels列表是可变对象,在PYTHON函数中作为参数时传址引用,能够被全局修改 # 所以这行代码导致函数外的同名变量被删除了元素,造成例句无法执行,提示'no surfacing' is not in list del(labels[bestFeat]) # 取出最优列,然后它的branch做分类 featValues = [example[bestFeat] for example in dataSet] uniqueVals = set(featValues) for value in uniqueVals: # 求出剩余的标签label subLabels = labels[:] # 遍历当前选择特征包含的所有属性值,在每个数据集划分上递归调用函数createTree() myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value), subLabels) # print 'myTree', value, myTree return myTree
测试算法:使用决策树执行分类
def classify(inputTree, featLabels, testVec): """classify(给输入的节点,进行分类) Args: inputTree 决策树模型 featLabels Feature标签对应的名称 testVec 测试输入的数据 Returns: classLabel 分类的结果值,需要映射label才能知道名称 """ # 获取tree的根节点对于的key值 firstStr = inputTree.keys()[0] # 通过key得到根节点对应的value secondDict = inputTree[firstStr] # 判断根节点名称获取根节点在label中的先后顺序,这样就知道输入的testVec怎么开始对照树来做分类 featIndex = featLabels.index(firstStr) # 测试数据,找到根节点对应的label位置,也就知道从输入的数据的第几位来开始分类 key = testVec[featIndex] valueOfFeat = secondDict[key] print '+++', firstStr, 'xxx', secondDict, '---', key, '>>>', valueOfFeat # 判断分枝是否结束: 判断valueOfFeat是否是dict类型 if isinstance(valueOfFeat, dict): classLabel = classify(valueOfFeat, featLabels, testVec) else: classLabel = valueOfFeat return classLabel
使用算法:此步骤可以适用于任何监督学习算法,而使用决策树可以更好地理解数据的内在含义。
完整代码地址: https://github.com/apachecn/MachineLearning/blob/master/src/python/3.DecisionTree/DecisionTree.py
项目概述
隐形眼镜类型包括硬材质、软材质以及不适合佩戴隐形眼镜。我们需要使用决策树预测患者需要佩戴的隐形眼镜类型。
开发流程
收集数据:提供的文本文件
文本文件数据格式如下:
young myope no reduced no lenses
pre myope no reduced no lenses
presbyopic myope no reduced no lenses
解析数据:解析 tab 键分隔的数据行
lecses = [inst.strip().split('\t') for inst in fr.readlines()] lensesLabels = ['age', 'prescript', 'astigmatic', 'tearRate']
分析数据:快速检查数据,确保正确地解析数据内容,使用 createPlot() 函数绘制最终的树形图。
>>> treePlotter.createPlot(lensesTree)
训练算法:使用 createTree() 函数
>>> lensesTree = trees.createTree(lenses, lensesLabels) >>> lensesTree {'tearRate': {'reduced': 'no lenses', 'normal': {'astigmatic':{'yes': {'prescript':{'hyper':{'age':{'pre':'no lenses', 'presbyopic': 'no lenses', 'young':'hard'}}, 'myope':'hard'}}, 'no':{'age':{'pre': 'soft', 'presbyopic':{'prescript': {'hyper':'soft', 'myope': 'no lenses'}}, 'young':'soft'}}}}}
测试算法: 编写测试函数验证决策树可以正确分类给定的数据实例。
使用算法: 存储树的数据结构,以便下次使用时无需重新构造树。
使用 pickle 模块存储决策树
def storeTree(inputTree, filename): impory pickle fw = open(filename, 'w') pickle.dump(inputTree, fw) fw.close() def grabTree(filename): import pickle fr = open(filename) return pickle.load(fr)
完整代码地址: https://github.com/apachecn/MachineLearning/blob/master/src/python/3.DecisionTree/DecisionTree.py
参考网站:https://www.cnblogs.com/apachecnxy/p/7462636.html