- 致良知之寄诸用明书
BonSun
众所周知,当今社会,父母和社会、学校对学生的期望往往是唯分数论,包括每个人对成功的理解也往往是功名利禄,忽视了最基本的学问。文中提到,花之千叶者无实,为其华美太发露耳。人只有沉下心来,韬光养晦,才能拥有真正的学问和本领。
- Python【math数学函数】
Alan_Lowe
#Pythonpython
Python【math数学函数】文章目录Python【math数学函数】数论与表示函数1.ceil()和floor()2.comb()3.copysign()4.fabs()5.factorial()6.gcd()7.lcm()幂函数与对数函数1.exp()和math.e和pow()2.log()和log2()和log10()3.sqrt(x)三角函数1.asin、acos()、atan()2.s
- python 实现eulers totient欧拉方程算法
luthane
算法python开发语言
eulerstotient欧拉方程算法介绍欧拉函数(Euler’sTotientFunction),通常表示为(),是一个与正整数相关的函数,它表示小于或等于的正整数中与互质的数的数目。欧拉函数在数论和密码学中有广泛的应用。欧拉函数的性质1.**对于质数,有φ(p)=p−1∗∗φ(p)=p−1^{**}φ(p)=p−1∗∗。2.**如果是质数的次幂,即n=pkn=p^kn=pk,则φ(n)=pk−
- 算法设计与分析学习(6)——数论
罗塞菈桔梨萝柚
算法学习算法线性代数
数论整除基本概念若aaa和bbb为整数,且a≠0a≠0a=0若存在整数qqq使得b=aqb=aqb=aq,那么就说aaa可以整除bbb或是bbb被aaa整除,记作a∣ba|ba∣b。aaa也被称为bbb的约数,bbb也被称为a的倍数。若bbb不能被aaa整除,则记作a∤ba\not{|}ba∣b。整数p≠0,±1p≠0,±1p=0,±1,且除了±1,±p±1,±p±1,±p外没有其他的约数
- 数论——欧几里得算法
NarutoTime
数论算法c++数据结构c语言
1.欧几里得简介 欧几里得(希腊文:Ευκλειδης,约公元前330年—公元前275年),古希腊数学家,被称为“几何之父”。他最著名的著作《几何原本》是欧洲数学的基础,在书中他提出五大公设。欧几里得的《几何原本》被广泛的认为是历史上最成功的教科书。欧几里得也写了一些关于透视、圆锥曲线、球面几何学及数论的作品。2.欧几里得算法欧几里得算法用于:求解a和b的最大公约数。最大公约数英文为:Gre
- 数论——扩展欧几里得算法
NOI_yzk
欧几里得&拓展欧几里得(Euclid&Extend-Euclid)欧几里得算法(Euclid)背景:欧几里德算法又称辗转相除法,用于计算两个正整数a,b的最大公约数。——百度百科代码:递推的代码是相当的简洁:intgcd(inta,intb){returnb==0?a:gcd(b,a%b);}分析:方法说了是辗转相除法,自然没有什么好介绍的了。。Fresh肯定会觉得这样递归下去会不会爆栈?实际上在
- 数论学习1(欧几里德算法+唯一分解定理+埃氏筛+拓展欧几里德+同余与模算术)
new出新对象!
数学数算法学习
目录1.唯一分解定理2.欧几里德算法(求最大公约数)3.求最小公倍数4.埃氏筛5.拓展欧几里德算法(1)证明一下线性方程组的正数的最小值是多少,(2)如何通过裴蜀定理退出拓展欧几里得算法(贝祖定理)6.同余与模算术(1)取模运算操作加法取模运算减法取模运算乘法取模运算(2)特殊的取模操作大整数取模幂取模(3)同余式,乘法逆元,费马小定理今天也是小小的开始学习数论方面的知识了,首先数论的入门章节必然
- 排列数+时间戳+逆元取模
wniuniu_
算法算法
前言:这个题目是真的难,不会做,看了题解才发现是咋回事题目地址最主要的就是为啥是除以3,c之前需要完成a和b,d和e对我们的答案没有影响,所以我们要除以A(3,3),但是a和b的排列没有要求,所以乘以A(2,2)抵消得到3#includeusingi64=longlong;usingu64=unsignedlonglong;consti64mod=1e9+7;i64ksm(i64a,i64b){i
- Collatz 猜想和 Python
不连续小姐
PythonDay4:CollatzConjecture原来总有学生问我,微积分有什么用啊,我说如果微积分学好了,也许抽象代数和数论就能学好,那最后就能像AndrewWiles一样上人物年度杂志的封面了.(AndrewWiles证明了Fermat'sLastTheorem,费玛大定理).[captionid="attachment_1466"align="alignnone"width="300"
- 初等数论--整除--带余除法
WeidanJi
初等数论数学密码学信息安全
初等数论--整除--带余除法概念基本性质带余除法博主本人是初学初等数论(整除+同余+原根),本意是想整理一些较难理解的定理、算法,加深记忆也方便日后查找;如果有错,欢迎指正。我整理成一个系列:初等数论,方便检索。概念初等数论研究对象是整数集合和自然数集合。初等数论研究对象是整数集合和自然数集合。初等数论研究对象是整数集合和自然数集合。b∣a:若a,b∈Z,b≠0,∃c∈Z,使a=bc,则称b整除a
- 河南萌新2024第四场
Pown_ShanYu
算法数据结构
C岗位分配题目大意:有n个岗位,m位志愿者,每个岗位至少需要a个志愿者,并且可以有志愿者可以空闲下来作预备,给出可能的分配情况总数思路:首先将每个岗位分配好至少需要的志愿者,再将剩下的人进行分配,那就满足球同盒不同模型(允许空盒),可用隔板法进行分配,需要额外开设一个空闲岗位用来预备,那么按照4个人去4个岗位,那么为c73,具体操作可看数论模板中发布的隔板法问题,递归求组合数Solved:intn
- 【读书笔记】吴非《致青年教师》(4)
冬儿菇凉
一、精要摘录(48——106页)1.教育教学不能“唯分数论“,比分数重要的是学生思维品质和解决实际问题的能力。2.一名教师心中有使命感,心中有学生才会很在意学生对他的态度,在意学生的接受度。3.作为教师,你要善于向学生问出有意思的问题。4.教育就是要培养好习惯,教是为了达到不需要教学生,不需要老师教了是教学的成功,也是教师的职业追求。5.教师是学习者,在学习上教师首先要郑重其事,学生才有可能养成敬
- 牛客小白月赛61-E-排队
LonelyGhosts
算法
很好的一道题啊,学到了不少东西!!!!首先是一个结论逆序对总数=n!/2*不相等的数字对数(1)不相等的数字对数怎么求结论不相等的数字对数=C(n,2)-∑C(2,cnt(i))(i数字的出现次数)(2)n!/2怎么处理,有取模的除运算怎么处理???这块一直不会,今天一学才发现,就是之前学过的乘法逆元,学过就忘,不愧是我(doge这里只说怎么处理,证明之类的不写了a/b%mod的情况,可以求b的乘
- 【代码随想录算法训练营Day39】62.不同路径;63. 不同路径 II
想做一只潜水的猪
算法
文章目录❇️Day39第九章动态规划part02✴️今日任务❇️62.不同路径自己的思路自己的代码随想录思路随想录代码❇️63.不同路径II自己的思路自己的代码随想录代码❇️Day39第九章动态规划part02✴️今日任务今天开始逐渐有dp的感觉了,题目不多,就两个不同路径,可以好好研究一下62.不同路径63.不同路径II❇️62.不同路径本题大家掌握动态规划的方法就可以。数论方法有点非主流,很难
- Acwing-基础算法课笔记之数学知识(中国剩余定理)
不会敲代码的狗
Acwing基础算法课笔记算法笔记线性代数
Acwing-基础算法课笔记之数学知识(中国剩余定理)一、中国剩余定理1、概述1、表述一2、表述二2、辗转相除法求逆元的回顾3、模拟过程(1)例题一(2)例题二4、闫氏思想5、求最小正整数解二、扩展知识一、中国剩余定理1、概述{x≡a1(modm1)x≡a2(modm2)x≡a3(modm3)⋮x≡an(modmn)\begin{cases}x\equiva_1(modm_1)\\x\equiva
- 算法D39 | 动态规划2 | 62.不同路径 63. 不同路径 II
memolaner
算法训练营算法动态规划数据结构c++python
今天开始逐渐有dp的感觉了,题目不多,就两个不同路径,可以好好研究一下62.不同路径本题大家掌握动态规划的方法就可以。数论方法有点非主流,很难想到。代码随想录视频讲解:动态规划中如何初始化很重要!|LeetCode:62.不同路径_哔哩哔哩_bilibili这个题看到路径的表示,第一直觉就是一个组合数的问题,学了一下C++计算组合数防止溢出的小技巧。第二个方法再动态规划完成,重点是把二维的动态规划
- 牛客周赛 Round 35(A,B,C,D,E,F,G)
邪神与厨二病
牛客算法暴力c++数论滑动窗口单调队列贪心构造
这场简单,甚至赛时90分钟不到就AK了。比赛链接,队友题解友链刚入住学校监狱,很不适应,最近难受的要死,加上最近几场CF打的都不顺利,san值要爆掉了,只能慢慢补题了。这场C是个滑动窗口,D是贪心,E是有点麻烦的构造,FG是数论。A小红的字符串切割思路:记录一下字符串长度,然后从中间拆开。code:#include#include#includeusingnamespacestd;strings;
- 算法——数论——同余
戏拈秃笔
数据结构与算法(java版)算法
目录同余一、试题算法训练同余方程同余同余使人们能够用等式的形式简洁地描述整除关系同余:若m(正整数),a和b是整数,a%m==b%m,或(a-b)%m==0,记为ab(modm)求解一元线性同余方程等价于求解二元线性丢番图方程一元线性同余方程,解法看下面第一题二元线性丢番图方程逆:的一个解为a模m的逆一、试题算法训练同余方程问题描述求关于x的同余方程ax≡1(modb)的最小正整数解。输入格式输入
- pku acm 题目分类
moxiaomomo
算法数据结构numbers优化calendarcombinations
1.搜索//回溯2.DP(动态规划)3.贪心北大ACM题分类2009-01-2714.图论//Dijkstra、最小生成树、网络流5.数论//解模线性方程6.计算几何//凸壳、同等安置矩形的并的面积与周长sp;7.组合数学//Polya定理8.模拟9.数据结构//并查集、堆sp;10.博弈论1、排序sp;1423,1694,1723,1727,1763,1788,1828,1838,1840,22
- 预处理组合数和逆元o(n)
顾客言
java算法数据结构
intfact[N],infact[N];intqpow(inta,intb){intres=1;while(b){if(b&1)res=res*a%mod;a=a*a%mod;b>>=1;}returnres;}voidinit(){fact[0]=1;for(inti=1;i=1;i--)infact[i-1]=infact[i]*i%mod;}intC(intn,intm){returnfa
- C++STL之Queue容器
芯片烧毁大师
数据结构C++c++开发语言
C++STL之Queue容器1.再谈队列回顾一下之前所学的队列,队列和栈不同,队列是一种先进先出的数据结构,STL的队列内容极其重要,虽然内容较少但是请务必掌握,STL的队列是快速构建搜索算法以及相关的数论图论的状态存储的基础。2.相关头文件头文件:#include3.初始化格式为:**explicit**queue(**const**container_type&ctnr=container_t
- 数字签名算法MD5withRSA
Just_Paranoid
技术流Clipmd5rsasignatrue
数字签名MD5withRSA,:将正文通过MD5数字摘要后,将密文再次通过生成的RSA密钥加密,生成数字签名,将明文与密文以及公钥发送给对方,对方拿到私钥/公钥对数字签名进行解密,然后解密后的,与明文经过MD5加密进行比较,如果一致则通过使用Signature的API来实现MD5withRSARSA原理:RSA算法基于一个十分简单的数论事实,将两个大素数相乘十分容易,但反过来想要对其乘积进行因式分
- 2301: 不定方程解的个数
jht0105
算法
题目描述输出不定方程解的个数。在数学中,不定方程是数论中的一个重要课题,在各种比赛中也常常出现.对于不定方程,有时我们往往只求非负整数解,现有方程ax+by+c=0,其中x、y为未知量且不超过10000,当给定a、b、c的值以后,可求出n组x、y的非负整数解,n>=0,,其中a,b,c均为[-10000,10000].输入描述一行,三个空格隔开的整数,为a、b、c的值。输出描述一个整数,为合法的解
- 扩展欧几里得算法 exgcd 求逆元(适用于模数不为质数的情况)
Waldeinsamkeit41
算法
原理不打算自己懂。。。代码ullexgcd(ulla,ullb,ull&x,ull&y)//扩展欧几里得求模b意义下a的逆元//返回的d是a和b的最大公约数,而最终的x是a在模b意义下的逆元{if(b==0){x=1;y=0;returna;}ulld=exgcd(b,a%b,y,x);y=y-a/b*x;returnd;}exgcd(a,b,x,y);//注意最终x可能返回负数,要加上b变成正数
- python伯努利多项式
微小冷
#sympypython开发语言sympy伯努利数排列组合符号计算
文章目录伯努利数和多项式sympy实现伯努利数是一种在数学、物理和工程中广泛应用的特殊数列,以瑞士数学家雅各布·伯努利(JacobBernoulli)的名字命名,并在许多领域中发挥重要作用。在数学中,它们与斐波那契数列、卡塔兰数、贝尔数等数列有密切联系,可以用于解决循环问题、组合问题和递推关系等数学问题。伯努利数和多项式伯努利(Bernoulli)数是一组在数论和复分析中出现的数,与伯努利多项式有
- 二次剩余问题x的求解及代码实现(python)
JustGo12
数论安全1024程序员节
一、问题引入二次剩余是数论基本概念之一。它是初等数论中非常重要的结果,不仅可用来判断二次同余式是否有解,还有很多用途。C.F.高斯称它为算术中的宝石,他一人先后给出多个证明。[1]研究二次剩余的理论称为二次剩余理论。二次剩余理论在实际上有广泛的应用,包括从噪音工程学到密码学以及大数分解。即关于方x^2≡a(modp)对于这个方程,求出满足条件的x。二、x的求解在上述问题下,根据p值的不同性质,可以
- 【数论】exgcd 扩展欧几里得算法
Texcavator
数论算法
参考:exgcd详解-zzt1208-博客园(cnblogs.com)exgcd(扩展欧几里得算法),用来求形如ax+by=gcd(a,b)ax+by=gcd(a,b)ax+by=gcd(a,b)(a,ba,ba,b为常数)的方程的一组整数解。(如果不确定等号右边是不是gcd,可以先当做gcd,求出来之后验证,是的话就是解,不是的话就不是解)推导见上面的链接,这篇只放个板子codeintexgcd
- [算法学习] 逆元与欧拉降幂
Waldeinsamkeit41
学习
费马小定理两个条件:p为质数a与p互质逆元如果要求x^-1modp,用快速幂求qmi(x,p-2)就好欧拉函数思路:找到因数i,phi/i*(i-1),除干净,判断最后的n欧拉降幂欧拉定理应用示例m!是一个非常大的数,所以要用欧拉降幂,不是把m!算出来后取模,而是计算的时候取模。
- 2021-07-30
RX-0493
学了一会数论,好难1.乘法逆元:a/b%p,若a/b在进行取模运算时,会出现精度问题,而且模运算对除法不适用,(没有分配律,大概就这意思)而求出乘法逆元后,可以把原式变为a*x%p的形式,且值不变。a*x≡1(modp)中,a,p为已知量,则x为a的乘法逆元。例题:乘法逆元设p=k*i+r,(1usingnamespacestd;constintN=20000530;intn,p,inv[N];i
- P6046 纯粹容器
DBWG
洛谷算法
纯粹容器-洛谷首先先看几个通用的知识点:1.费马小定理+快速幂求逆元(求倒数)当mod为质数的时候可以使用费马小定理llksm(intx,inty){if(x==1)return1;llres=1,base=x;while(y){if(y&1)res=(res*base)%mod;base=(base*base)%mod;y>>=1;}returnres;}intinv(intaim)//inve
- Enum 枚举
120153216
enum枚举
原文地址:http://www.cnblogs.com/Kavlez/p/4268601.html Enumeration
于Java 1.5增加的enum type...enum type是由一组固定的常量组成的类型,比如四个季节、扑克花色。在出现enum type之前,通常用一组int常量表示枚举类型。比如这样:
public static final int APPLE_FUJI = 0
- Java8简明教程
bijian1013
javajdk1.8
Java 8已于2014年3月18日正式发布了,新版本带来了诸多改进,包括Lambda表达式、Streams、日期时间API等等。本文就带你领略Java 8的全新特性。
一.允许在接口中有默认方法实现
Java 8 允许我们使用default关键字,为接口声明添
- Oracle表维护 快速备份删除数据
cuisuqiang
oracle索引快速备份删除
我知道oracle表分区,不过那是数据库设计阶段的事情,目前是远水解不了近渴。
当前的数据库表,要求保留一个月数据,且表存在大量录入更新,不存在程序删除。
为了解决频繁查询和更新的瓶颈,我在oracle内根据需要创建了索引。但是随着数据量的增加,一个半月数据就要超千万,此时就算有索引,对高并发的查询和更新来说,让然有所拖累。
为了解决这个问题,我一般一个月会进行一次数据库维护,主要工作就是备
- java多态内存分析
麦田的设计者
java内存分析多态原理接口和抽象类
“ 时针如果可以回头,熟悉那张脸,重温嬉戏这乐园,墙壁的松脱涂鸦已经褪色才明白存在的价值归于记忆。街角小店尚存在吗?这大时代会不会牵挂,过去现在花开怎么会等待。
但有种意外不管痛不痛都有伤害,光阴远远离开,那笑声徘徊与脑海。但这一秒可笑不再可爱,当天心
- Xshell实现Windows上传文件到Linux主机
被触发
windows
经常有这样的需求,我们在Windows下载的软件包,如何上传到远程Linux主机上?还有如何从Linux主机下载软件包到Windows下;之前我的做法现在看来好笨好繁琐,不过也达到了目的,笨人有本方法嘛;
我是怎么操作的:
1、打开一台本地Linux虚拟机,使用mount 挂载Windows的共享文件夹到Linux上,然后拷贝数据到Linux虚拟机里面;(经常第一步都不顺利,无法挂载Windo
- 类的加载ClassLoader
肆无忌惮_
ClassLoader
类加载器ClassLoader是用来将java的类加载到虚拟机中,类加载器负责读取class字节文件到内存中,并将它转为Class的对象(类对象),通过此实例的 newInstance()方法就可以创建出该类的一个对象。
其中重要的方法为findClass(String name)。
如何写一个自己的类加载器呢?
首先写一个便于测试的类Student
- html5写的玫瑰花
知了ing
html5
<html>
<head>
<title>I Love You!</title>
<meta charset="utf-8" />
</head>
<body>
<canvas id="c"></canvas>
- google的ConcurrentLinkedHashmap源代码解析
矮蛋蛋
LRU
原文地址:
http://janeky.iteye.com/blog/1534352
简述
ConcurrentLinkedHashMap 是google团队提供的一个容器。它有什么用呢?其实它本身是对
ConcurrentHashMap的封装,可以用来实现一个基于LRU策略的缓存。详细介绍可以参见
http://code.google.com/p/concurrentlinke
- webservice获取访问服务的ip地址
alleni123
webservice
1. 首先注入javax.xml.ws.WebServiceContext,
@Resource
private WebServiceContext context;
2. 在方法中获取交换请求的对象。
javax.xml.ws.handler.MessageContext mc=context.getMessageContext();
com.sun.net.http
- 菜鸟的java基础提升之道——————>是否值得拥有
百合不是茶
1,c++,java是面向对象编程的语言,将万事万物都看成是对象;java做一件事情关注的是人物,java是c++继承过来的,java没有直接更改地址的权限但是可以通过引用来传值操作地址,java也没有c++中繁琐的操作,java以其优越的可移植型,平台的安全型,高效性赢得了广泛的认同,全世界越来越多的人去学习java,我也是其中的一员
java组成:
- 通过修改Linux服务自动启动指定应用程序
bijian1013
linux
Linux中修改系统服务的命令是chkconfig (check config),命令的详细解释如下: chkconfig
功能说明:检查,设置系统的各种服务。
语 法:chkconfig [ -- add][ -- del][ -- list][系统服务] 或 chkconfig [ -- level <</SPAN>
- spring拦截器的一个简单实例
bijian1013
javaspring拦截器Interceptor
Purview接口
package aop;
public interface Purview {
void checkLogin();
}
Purview接口的实现类PurviesImpl.java
package aop;
public class PurviewImpl implements Purview {
public void check
- [Velocity二]自定义Velocity指令
bit1129
velocity
什么是Velocity指令
在Velocity中,#set,#if, #foreach, #elseif, #parse等,以#开头的称之为指令,Velocity内置的这些指令可以用来做赋值,条件判断,循环控制等脚本语言必备的逻辑控制等语句,Velocity的指令是可扩展的,即用户可以根据实际的需要自定义Velocity指令
自定义指令(Directive)的一般步骤
&nbs
- 【Hive十】Programming Hive学习笔记
bit1129
programming
第二章 Getting Started
1.Hive最大的局限性是什么?一是不支持行级别的增删改(insert, delete, update)二是查询性能非常差(基于Hadoop MapReduce),不适合延迟小的交互式任务三是不支持事务2. Hive MetaStore是干什么的?Hive persists table schemas and other system metadata.
- nginx有选择性进行限制
ronin47
nginx 动静 限制
http {
limit_conn_zone $binary_remote_addr zone=addr:10m;
limit_req_zone $binary_remote_addr zone=one:10m rate=5r/s;...
server {...
location ~.*\.(gif|png|css|js|icon)$ {
- java-4.-在二元树中找出和为某一值的所有路径 .
bylijinnan
java
/*
* 0.use a TwoWayLinkedList to store the path.when the node can't be path,you should/can delete it.
* 1.curSum==exceptedSum:if the lastNode is TreeNode,printPath();delete the node otherwise
- Netty学习笔记
bylijinnan
javanetty
本文是阅读以下两篇文章时:
http://seeallhearall.blogspot.com/2012/05/netty-tutorial-part-1-introduction-to.html
http://seeallhearall.blogspot.com/2012/06/netty-tutorial-part-15-on-channel.html
我的一些笔记
===
- js获取项目路径
cngolon
js
//js获取项目根路径,如: http://localhost:8083/uimcardprj
function getRootPath(){
//获取当前网址,如: http://localhost:8083/uimcardprj/share/meun.jsp
var curWwwPath=window.document.locati
- oracle 的性能优化
cuishikuan
oracleSQL Server
在网上搜索了一些Oracle性能优化的文章,为了更加深层次的巩固[边写边记],也为了可以随时查看,所以发表这篇文章。
1.ORACLE采用自下而上的顺序解析WHERE子句,根据这个原理,表之间的连接必须写在其他WHERE条件之前,那些可以过滤掉最大数量记录的条件必须写在WHERE子句的末尾。(这点本人曾经做过实例验证过,的确如此哦!
- Shell变量和数组使用详解
daizj
linuxshell变量数组
Shell 变量
定义变量时,变量名不加美元符号($,PHP语言中变量需要),如:
your_name="w3cschool.cc"
注意,变量名和等号之间不能有空格,这可能和你熟悉的所有编程语言都不一样。同时,变量名的命名须遵循如下规则:
首个字符必须为字母(a-z,A-Z)。
中间不能有空格,可以使用下划线(_)。
不能使用标点符号。
不能使用ba
- 编程中的一些概念,KISS、DRY、MVC、OOP、REST
dcj3sjt126com
REST
KISS、DRY、MVC、OOP、REST (1)KISS是指Keep It Simple,Stupid(摘自wikipedia),指设计时要坚持简约原则,避免不必要的复杂化。 (2)DRY是指Don't Repeat Yourself(摘自wikipedia),特指在程序设计以及计算中避免重复代码,因为这样会降低灵活性、简洁性,并且可能导致代码之间的矛盾。 (3)OOP 即Object-Orie
- [Android]设置Activity为全屏显示的两种方法
dcj3sjt126com
Activity
1. 方法1:AndroidManifest.xml 里,Activity的 android:theme 指定为" @android:style/Theme.NoTitleBar.Fullscreen" 示例: <application
- solrcloud 部署方式比较
eksliang
solrCloud
solrcloud 的部署其实有两种方式可选,那么我们在实践开发中应该怎样选择呢? 第一种:当启动solr服务器时,内嵌的启动一个Zookeeper服务器,然后将这些内嵌的Zookeeper服务器组成一个集群。 第二种:将Zookeeper服务器独立的配置一个集群,然后将solr交给Zookeeper进行管理
谈谈第一种:每启动一个solr服务器就内嵌的启动一个Zoo
- Java synchronized关键字详解
gqdy365
synchronized
转载自:http://www.cnblogs.com/mengdd/archive/2013/02/16/2913806.html
多线程的同步机制对资源进行加锁,使得在同一个时间,只有一个线程可以进行操作,同步用以解决多个线程同时访问时可能出现的问题。
同步机制可以使用synchronized关键字实现。
当synchronized关键字修饰一个方法的时候,该方法叫做同步方法。
当s
- js实现登录时记住用户名
hw1287789687
记住我记住密码cookie记住用户名记住账号
在页面中如何获取cookie值呢?
如果是JSP的话,可以通过servlet的对象request 获取cookie,可以
参考:http://hw1287789687.iteye.com/blog/2050040
如果要求登录页面是html呢?html页面中如何获取cookie呢?
直接上代码了
页面:loginInput.html
代码:
<!DOCTYPE html PUB
- 开发者必备的 Chrome 扩展
justjavac
chrome
Firebug:不用多介绍了吧https://chrome.google.com/webstore/detail/bmagokdooijbeehmkpknfglimnifench
ChromeSnifferPlus:Chrome 探测器,可以探测正在使用的开源软件或者 js 类库https://chrome.google.com/webstore/detail/chrome-sniffer-pl
- 算法机试题
李亚飞
java算法机试题
在面试机试时,遇到一个算法题,当时没能写出来,最后是同学帮忙解决的。
这道题大致意思是:输入一个数,比如4,。这时会输出:
&n
- 正确配置Linux系统ulimit值
字符串
ulimit
在Linux下面部 署应用的时候,有时候会遇上Socket/File: Can’t open so many files的问题;这个值也会影响服务器的最大并发数,其实Linux是有文件句柄限制的,而且Linux默认不是很高,一般都是1024,生产服务器用 其实很容易就达到这个数量。下面说的是,如何通过正解配置来改正这个系统默认值。因为这个问题是我配置Nginx+php5时遇到了,所以我将这篇归纳进
- hibernate调用返回游标的存储过程
Supanccy2013
javaDAOoracleHibernatejdbc
注:原创作品,转载请注明出处。
上篇博文介绍的是hibernate调用返回单值的存储过程,本片博文说的是hibernate调用返回游标的存储过程。
此此扁博文的存储过程的功能相当于是jdbc调用select 的作用。
1,创建oracle中的包,并在该包中创建的游标类型。
---创建oracle的程
- Spring 4.2新特性-更简单的Application Event
wiselyman
application
1.1 Application Event
Spring 4.1的写法请参考10点睛Spring4.1-Application Event
请对比10点睛Spring4.1-Application Event
使用一个@EventListener取代了实现ApplicationListener接口,使耦合度降低;
1.2 示例
包依赖
<p