bzoj3626: [LNOI2014]LCA(离线处理+树链剖分)

题目传送门

解法:
对于任意一个询问:
l r z
对于任意一个点来说。他对答案的贡献实际上是LCA(i,z)的深度。
也就是lca到根的点数。
那么我们可以每个点到根的路径都加1。然后询问下z到根的路径上的答案总和其实就是答案啊。
显然可以分成两个区间,一个1到l-1,一个1到r。l到r的答案用两个答案相减,正确性显然。

那么离线处理。
把每个操作都分成两个区间。
然后分别按照右端点排序。把每个点到路径的点都加1。
然后在询问z到根答案即可。
过程用树链剖分实现即可。

代码实现:

#include
#include
#include
#include
#include
#include
#include
using namespace std;
struct node {int x,y,next;}a[110000];int len,last[110000];const int mod=201314;
void ins(int x,int y) {len++;a[len].x=x;a[len].y=y;a[len].next=last[x];last[x]=len;}
int tot[110000],son[110000],fa[110000];
void pre_tree_node(int x) {
    son[x]=0;tot[x]=1;
    for(int k=last[x];k;k=a[k].next) {
        int y=a[k].y;pre_tree_node(y);tot[x]+=tot[y];if(tot[y]>tot[son[x]])son[x]=y;
    }
}
int z,ys[110000],top[110000];
void pre_tree_edge(int x,int tp) {
    ys[x]=++z;top[x]=tp;
    if(son[x]!=0)pre_tree_edge(son[x],tp);
    for(int k=last[x];k;k=a[k].next) {
        int y=a[k].y;
        if(y!=son[x])pre_tree_edge(y,y);
    }
}
struct trnode {int l,r,lc,rc,c,lazy,s;}tr[210000];int trlen;
void bt(int l,int r) {
    int now=++trlen;
    tr[now].l=l;tr[now].r=r;tr[now].lc=tr[now].rc=-1;tr[now].c=0;tr[now].lazy=0;tr[now].s=r-l+1;
    if(lint mid=(l+r)/2;tr[now].lc=trlen+1;bt(l,mid);tr[now].rc=trlen+1;bt(mid+1,r);}
}
void update(int now) {
    int lc=tr[now].lc,rc=tr[now].rc;
    if(lc==-1)return ;
    tr[lc].c+=tr[lc].s*tr[now].lazy;tr[rc].c+=tr[rc].s*tr[now].lazy;
    tr[lc].lazy+=tr[now].lazy;tr[rc].lazy+=tr[now].lazy;tr[now].lazy=0;
}
void change(int now,int l,int r) {
    if(tr[now].lazy!=0)update(now);
    if(tr[now].l==l&&tr[now].r==r) {tr[now].c=tr[now].c+tr[now].s;tr[now].lazy++;return ;}
    int lc=tr[now].lc,rc=tr[now].rc,mid=(tr[now].l+tr[now].r)/2;
    if(r<=mid)change(lc,l,r);else if(l>mid)change(rc,l,r);
    else {change(lc,l,mid);change(rc,mid+1,r);}
    tr[now].c=tr[lc].c+tr[rc].c;
}
int find_sum(int now,int l,int r) {
    if(tr[now].lazy!=0)update(now);
    if(tr[now].l==l&&tr[now].r==r)return tr[now].c;
    int lc=tr[now].lc,rc=tr[now].rc,mid=(tr[now].l+tr[now].r)/2;
    if(r<=mid)return find_sum(lc,l,r);else if(l>mid)return find_sum(rc,l,r);
    else return find_sum(lc,l,mid)+find_sum(rc,mid+1,r);
}
void solve_change(int x) {
    int tx=top[x];
    while(tx!=1) {change(1,ys[tx],ys[x]);x=fa[tx];tx=top[x];}
    change(1,ys[tx],ys[x]);return ;
}
int solve_sum(int x) {
    int tx=top[x],ans=0;
    while(tx!=1) {ans+=find_sum(1,ys[tx],ys[x]);ans%=mod;x=fa[tx];tx=top[x];}
    ans+=find_sum(1,ys[tx],ys[x]);ans%=mod;return ans;
}
struct Q {int ed,s,t,z;}e[110000];
bool cmp(Q n1,Q n2) {return n1.edint ans2[110000],ans1[110000];
int main() {
    int n,m;scanf("%d%d",&n,&m);len=0;memset(last,0,sizeof(last));
    for(int i=2;i<=n;i++) {int x;scanf("%d",&x);x++;ins(x,i);fa[i]=x;}
    pre_tree_node(1);z=0;pre_tree_edge(1,1);trlen=0;bt(1,z);int sum=0;
    for(int i=1;i<=m;i++) {
        int l,r,Z;scanf("%d%d%d",&l,&r,&Z);l++;r++;Z++;
        sum++;e[sum].s=i;e[sum].ed=l-1;e[sum].z=Z;e[sum].t=-1;
        sum++;e[sum].s=i;e[sum].ed=r;e[sum].z=Z;e[sum].t=1;
    }sort(e+1,e+1+sum,cmp);
    int now=0;
    for(int i=1;i<=sum;i++) {
        while(nowif(e[i].t==1) ans1[e[i].s]=solve_sum(e[i].z);
        else ans2[e[i].s]=solve_sum(e[i].z);
    }for(int i=1;i<=m;i++)printf("%d\n",(ans1[i]-ans2[i]+mod)%mod);
    return 0;
}

你可能感兴趣的:(树链剖分,BZOJ)