- 代码随想录|图论理论基础
1.图的种类(有向图和无向图)有向图:图中边有方向无向图:图中边无方向加权有向图:图中边是有权值和方向的,无向图也是如此2.度(无向图中有几条边连接该节点,该节点就有几度)出度:从该节点出发的边的个数入度:指向该节点边的个数3.连通性(在图中表示节点的联通情况,我们称之为连通性)连通图:在无向图中,任何两个节点都是可以到达的(可以借助其他节点)非连通图:有节点不能到达其他节点强连通图:在有向图中,
- 深度优先在数据结构与算法中的独特作用
AI天才研究院
AI大模型企业级应用开发实战Agent实战AI人工智能与大数据深度优先算法ai
深度优先在数据结构与算法中的独特作用关键词:深度优先搜索、数据结构、算法设计、图遍历、递归、迭代、问题求解摘要:深度优先搜索(DFS)是计算机科学中最重要的图遍历算法之一,其通过"尽可能深"的探索路径的策略,在树与图的结构分析、问题求解中展现出独特价值。本文从DFS的核心原理出发,系统解析其在数据结构中的实现方式、算法设计中的问题建模方法,结合数学模型分析时间空间复杂度,通过迷宫求解、强连通分量检
- 《强连通分量(tarjan算法)》基础概念
文章目录一、算法概述二、算法思路三、伪代码实现1.类定义与数据结构2.主程序示例四、算法解释1.初始化阶段2.DFS遍历与时间戳更新3.强连通分量识别4.示例演示五、复杂度分析一、算法概述定义:Tarjan算法是一种用于在有向图中求解强连通分量(StronglyConnectedComponent,SCC)的高效算法。强连通分量指有向图中任意两顶点互相可达的最大子图。核心思想:基于深度优先搜索(D
- 【无标题】路径着色问题的革命性重构:拓扑色动力学模型下的超越与升华
2301_81062744颜斌
拓扑学
路径着色问题的革命性重构:拓扑色动力学模型下的超越与升华一、以色列路径着色模型的根本局限```mermaidgraphTBA[以色列路径着色模型]-->B[强连通约束]A-->C[仅实边三角剖分]A-->D[静态色彩分配]B-->E[无法描述非相邻关系]C-->F[忽略量子隧穿]D-->G[缺乏动力学机制]```**核心缺陷**:1.**维度塌缩**:将三维色彩动力学压缩为二维静态映射$$\mat
- 26考研408——疑难杂症、好题思考题分享汇总~
408答疑+v:18675660929
26考研408——疑难杂症好题思考题分享~考研笔记数据结构算法c语言
408答疑更新日志时间:2025-4-20内容:深度解析树的结点关系计算深度解析哈夫曼树路径问题深度解析无向图连通分量深度解析平衡二叉树的删除深度解析二叉平衡树的最大深度时间:2025-4-20内容:B树失败结点个数计算好题分享树结构与序列插入好题分享带权无向图好题分享图的遍历好题分享时间:2025-5-11内容:树与二叉树转换好题分享无向图连通图好题分享有向图强连通分量好题分享(一)有向图强连通
- 【第十六届 蓝桥杯 省 C/Python A/Java C 登山】题解
慕容青峰
蓝桥杯蓝桥杯c语言python算法c++sublimetext
题目链接:P12169[蓝桥杯2025省C/PythonA/JavaC]登山思路来源一开始想的其实是记搜,但是发现还有先找更小的再找更大的这种路径,所以这样可能错过某些最优决策,这样不行。于是我又想能不能从最大值出发往回搜,手玩了一下发现其实和记搜没什么区别,无非是把边给反向了。那可能的做法就是强连通分量?我当时板子都掏出来了,但是模拟了一番之后就发现可以用并查集。下面是正文。算法:并查集由于行列
- 蓝桥杯备战资料从0开始!!!(python B组)(最全面!最贴心!适合小白!蓝桥云课)图论
手可摘星chen.
蓝桥杯python图论
注:你的关注,点赞,评论让我不停更新一、蓝桥杯图论常见题型最短路径问题单源最短路径(Dijkstra算法)多源最短路径(Floyd-Warshall算法)带有负权边的最短路径(Bellman-Ford算法)最小生成树(MST)Kruskal算法(并查集+贪心)Prim算法(优先队列优化)遍历与连通性DFS/BFS求连通块强连通分量(Tarjan算法)网络流与匹配二分图匹配(匈牙利算法)最大流问题(
- 图论的学习笔记(1)
sml259(劳改版)
图论笔记数据结构拓扑排序
目录一、图的存储1、邻接矩阵2、邻接表二、连通图和强连通图1、连通图(无向图)2、强连通图(有向图)三、图的判环1、无向图判环2、有向图判环(重点)题目描述输入格式输出格式输入输出样例说明/提示一、图的存储1、邻接矩阵如果图的边比较密集(稠密图),或者图的顶点较少(小于1000),那么这个图一般用邻接矩阵来表示。空间复杂度O(V^2),其中V是顶点数目。2、邻接表如果图的边比较稀疏(稀疏图),或者
- 【数据结构】图解图论:度、路径、连通性,五大概念一网打尽
蒙奇D索大
保姆级教学数据结构(DS)数据结构图论算法考研改行学it
图的基本概念导读一、顶点的度二、路径三、距离四、连通五、子图结语**内容总结****下期预告****互动提醒**导读大家好,很高兴又和大家见面啦!!!在上一篇中,我们初步认识了图的定义与分类。今天,我们将深入探讨图的核心概念:•顶点的度(无向图与有向图的入度、出度)•路径与回路(简单路径、简单回路、路径长度的计算)•距离与连通性(连通图、强连通图的判断)•子图与连通分量(生成子图、极大连通子图)通
- 408第二轮复习 数据结构 第六章 图
一只大小菜
数据结构图论
408第二轮复习数据结构第六章图的定义图的存储图的定义简单图:无自环和重边,对于简单完全图来说|E|的取值0到n(n-1)/2,有向图是0到n(n-1)子图:如果Va是Vb的子集且Ea是Eb的子集则称Ga是Gb的子图连通、连通图和连通分量:无向图中任意两点都是连通为连通图,极大连通子图称为连通分量强连通分量、强连通分量,在有向图中任意两点都是连通为强连通图、极大连通子图称为强连通分量生成树、生成森
- 信息学奥赛一本通 1514:【例 2】最大半连通子图 | 洛谷 P2272 [ZJOI2007] 最大半连通子图
君义_noip
洛谷题解信息学奥赛一本通题解图论C++信息学奥赛
【题目链接】ybt1514:【例2】最大半连通子图洛谷P2272[ZJOI2007]最大半连通子图【题目考点】1.图论:强连通分量缩点2.图论:拓扑排序有向无环图动规【解题思路】对于图中任意两顶点u、v,满足u到v或v到u有路径,该图就是单向连通图。本题中的半连通图,指的就是单向连通图。导出图,指的是选择顶点之间的所有边也都必须选择。该题求图中最大的半连通子图,而且该图必须是导出图,也就是选择顶点
- Leetcode 刷题笔记1 图论part01
平乐君
leetcode笔记图论
图论的基础知识:图的种类:有向图(边有方向)、无向图(边无方向)、加权有向图(边有方向和权值)度:无向图中几条边连接该节点,该节点就有几度;有向图中每个节点有入度和出度连通性:在无向图中,任何两个节点都是可以到达的,称之为连通图,否则称之为非连通图在有向图中,热河两个节点是可以相互到达的,称之为强连通图联通分量:在无向图中的极大连通子图称之为该图的一个连通分量强连通分量:有向图中极大强连通子图称之
- 笔记:代码随想录算法训练营day56:图论理论基础、深搜理论基础、98. 所有可达路径、广搜理论基础
jingjingjing1111
笔记
学习资料:代码随想录连通图是给无向图的定义,强连通图是给有向图的定义朴素存储:二维数组邻接矩阵邻接表:list基础知识:C++容器类|菜鸟教程深搜是沿着一个方向搜到头再不断回溯,转向;广搜是每一次搜索要把当前能够得到的方向搜个遍深搜三部曲:传入参数、终止条件、处理节点+递推+回溯98.所有可达路径卡码网题目链接(ACM模式)先是用邻接矩阵,矩阵的x,y表示从x到y有一条边主要还是用回溯方法遍历整个
- 考研系列-数据结构第六章:图(上)
Nelson_hehe
#数据结构笔记数据结构图的存储邻接表邻接矩阵十字链表法图的基本操作
目录写在前面一、图的基本概念1.图的定义2.图的种类(1)无向图、有向图(2)简单图、多重图3.顶点的度4.顶点与顶点之间关系描述5.图的连通性(1)连通图、强连通图(2)连通分量、强连通分量(3)生成树、生成森林6.带权图7.几种特殊形态的图(会识别、掌握特性)8.总结9.习题总结(1)选择题(2)简答题二、图的存储1.邻接矩阵(1)存储结构(存储非带权图)(2)邻接矩阵基本性质(3)邻接矩阵存
- 《代码随想录第五十五天》——图论基础、深度搜索理论基础、所有可达路径、广度搜索理论基础
-Michelangelo-
算法刷题图论
《代码随想录第五十五天》——图论基础、深度搜索理论基础、所有可达路径、广度搜索理论基础本篇文章的所有内容仅基于C++撰写。1.图论基础1.1概念种类分为有向图和无向图,无权值图和加权图度有几条便连接节点,该节点就有几度有向图中,出度是节点指向其他节点的边个数;入度是其他节点指向该节点的边个数连通性节点互相到达称为连通图,节点不能互相到达称为非连通图。在有向图中,所有节点可以相互到达被称为强连通图。
- [BZOJ1093][ZJOI2007]最大半连通子图(Tarjan+拓扑排序+DP)
xyz32768
BZOJUOJLOJ拓扑排序Tarjan
首先得到,一个强连通分量一定是半连通的。把强连通分量缩点之后,可以得到一个拓扑图。下面,sze[u]为新图中点u所对应强连通分量的大小。缩点之后,就很容易得出,一个半连通子图一定是拓扑图中的一条链,半连通子图的大小为这条链上所有点的sze之和。所以,现在就是要求这个拓扑图的最长链(sze之和最大)。考虑按照拓扑排序DP,f[u]表示以u为终点的最长链长度:1、对于点u,如果点u的入度为0,则f[u
- [ZJOI2007]最大半连通子图【tarjan缩点】【拓扑排序+DP】
ssl_fuyang
tarjanDP拓扑排序图论算法
>LinkluoguP2272ybtoj最大半连通子图>DescriptionN≤105,M≤106N\le10^5,M\le10^6N≤105,M≤106>解题思路强连通子图一定是半连通子图,所以考虑到把这张图进行缩点然后图就变成了一个DAG这时就会发现,题目要求求的最大半连通子图其实就是DAG上的一条链(如果是两条链组合的话,不满足要求)要注意的是,缩点以后建边要注意判重,建重边的话会似的方案
- YbtOJ 强连通分量课堂过关 例1 有向图缩点【Tarjan】【DP】【拓扑排序】
JA_yichao
题解YbtOJ专项练习题#强连通分量
思路这道题首先搞一个TarjanTarjanTarjan,求出所有强连通分量。然后就缩点,具体做法是枚举每条边然后判断这条边上的点在不在同一个强连通分量上,不在就连边。然后就做一个DP+拓扑排序,边拓扑边DP,f[y]=max(f[y],f[x]+cnt[y])f[y]=\max(f[y],f[x]+cnt[y])f[y]=max(f[y],f[x]+cnt[y]);代码#include#inc
- 100种算法【Python版】第38篇—— Tarjan算法
AnFany
算法python开发语言Tarjan算法群体分析
本文目录1算法说明2算法示例:社交群体分析3算法示例:交通路网中的强连通分量识别4算法应用1算法说明Tarjan算法由计算机科学家RobertTarjan于1972年提出,目的是在有向图中有效地找到强连通分量(StronglyConnectedComponents,SCC)。强连通分量是指图中一个最大子图,其中任意两个节点之间都有路径相互可达。Tarjan算法是基于深度优先搜索(DFS)的一种高效
- Python实现强连通分量算法——Tarjan算法
NoABug
算法深度优先python
Python实现强连通分量算法——Tarjan算法Tarjan算法是一种基于深度优先搜索(DFS)的强连通分量(SCC)查找算法,由RobertTarjan在1972年提出。它采用了栈(Stack)数据结构来记录已发现但未处理完的节点,并通过对每个节点进行DFS遍历来寻找强连通分量。以下是Python实现的Tarjan算法的完整源码:#-*-coding:utf-8-*-deftarjan(gra
- 代码随想录算法训练营DAY56|图论理论基础、98. 所有可达路径、深搜广搜基础
阿緑
代码随想录打卡算法图论
图论理论基础强连通图是在有向图中任何两个节点是可以相互到达在无向图中的极大连通子图称之为该图的一个连通分量。98.所有可达路径defdfs(graph,a,n,path,result):ifa==n-1:result.append(('').join(path[:]))forjinrange(N):ifgraph[a][j]:path.append(str(j+1))dfs(graph,j,n,p
- 代码随想录算法训练营day64 | 98. 所有可达路径
sunflowers11
代码随想录二刷算法
图论理论基础1、图的种类整体上一般分为有向图和无向图。加权有向图,就是图中边是有权值的,加权无向图也是同理。2、度无向图中有几条边连接该节点,该节点就有几度在有向图中,每个节点有出度和入度。出度:从该节点出发的边的个数。入度:指向该节点边的个数。3、连通性在图中表示节点的连通情况,我们称之为连通性连通图和强连通图在无向图中,任何两个节点都是可以到达的,我们称之为连通图。如果有节点不能到达其他节点,
- Day44 | 图论理论基础 98. 所有可达路径
086小包字
图论算法数据结构java
语言Java图论理论基础整体上一般分为有向图和无向图有向图就是有箭头的,无向图就是没有方向的。有几条连线就是有几个度。在有向图中,每个节点有出度和入度。出度:从该节点出发的边的个数。入度:指向该节点边的个数。在无向图中,任何两个节点都是可以到达的,我们称之为连通图。在有向图中,任何两个节点是可以相互到达的,我们称之为强连通图。98.所有可达路径98.所有可达路径题目给定一个有n个节点的有向无环图,
- 强连通分量——tarjan算法缩点
小陈同学_
图论算法图论c++
一.什么是强连通分量?强连通分量:在有向图G中,如果两个顶点u,v间(u->v)有一条从u到v的有向路径,同时还有一条从v到u的有向路径,则称两个顶点强连通(stronglyconnected)。如果有向图G的每两个顶点都强连通,称G是一个强连通图。有向图的极大强连通子图,称为强连通分量。简单点说就是:如果一个有向图中,存在一条回路,所有的结点至少被经过一次,这样的图为强连通图。在强连图图的基础上
- 强连通分量-tarjan算法缩点
小陈同学_
算法图论数据结构
一.什么是强连通分量?强连通分量:在有向图G中,如果两个顶点u,v间(u->v)有一条从u到v的有向路径,同时还有一条从v到u的有向路径,则称两个顶点强连通(stronglyconnected)。如果有向图G的每两个顶点都强连通,称G是一个强连通图。有向图的极大强连通子图,称为强连通分量。简单点说就是:如果一个有向图中,存在一条回路,所有的结点至少被经过一次,这样的图为强连通图。在强连图图的基础上
- ACM算法分类(要学习的东西还很多)
还是太年轻
ACM所有算法数据结构栈,队列,链表哈希表,哈希数组堆,优先队列双端队列可并堆左偏堆二叉查找树Treap伸展树并查集集合计数问题二分图的识别平衡二叉树二叉排序树线段树一维线段树二维线段树树状数组一维树状数组N维树状数组字典树后缀数组,后缀树块状链表哈夫曼树桶,跳跃表Trie树(静态建树、动态建树)AC自动机LCA和RMQ问题KMP算法图论基本图算法图广度优先遍历深度优先遍历拓扑排序割边割点强连通分
- ACM算法目录
龍木
ACM所有算法数据结构栈,队列,链表哈希表,哈希数组堆,优先队列双端队列可并堆左偏堆二叉查找树Treap伸展树并查集集合计数问题二分图的识别平衡二叉树二叉排序树线段树一维线段树二维线段树树状数组一维树状数组N维树状数组字典树后缀数组,后缀树块状链表哈夫曼树桶,跳跃表Trie树(静态建树、动态建树)AC自动机LCA和RMQ问题KMP算法图论基本图算法图广度优先遍历深度优先遍历拓扑排序割边割点强连通分
- 史上最系统的的竞赛图讲解:学透竞赛图看这一篇就够了!
准确、系统、简洁地讲算法
算法图论
文章目录定义性质一、兰道定理(竞赛图的判定)比分序列:将每个点的出度从小到大排序的序列。定理内容:定理证明拓展二、竞赛图缩点后拓扑序成链状,拓扑序小的点向所有拓扑序比它大的点连边。(1)与SCC,拓扑序相关推论:1.根据成链状容易发现当不存在位置i满足以下条件,图为强连通图。2.在同一个SCC中在比分序列上是一个区间,根据比分序列可以完成拓扑排序。(无需建图)(2)与三元环和n>=3元环相关a.竞
- POJ 2117 Electricity 题解 Tarjan 割点
kaiserqzyue
算法题目算法图论c++
题目链接:POJ2117Electricity题目描述:给定一张无向图,问删除一个结点后最多会有多少个强连通分量。题解:我们用scc表示初始的图中有多少个强连通分量,该值可以通过DFS计算出来。接下来我们只需要计算出删除每个割点会增加的强连通分量个数cnt即可,答案即为cnt+ans,对于一个强连通分量中的非根结点,用son表示有多少个子结点能够返回到当前结点或者当前结点之前遍历的结点,那么不难发
- POJ 1523 SPF题解 Tarjan 割点
kaiserqzyue
算法题目c++算法图论
题目链接:POJ1523SPF题目描述:给定一张连通的无向图,问哪些结点是割点,分别删除各个割点时会产生几个强连通分量。题解:求割点可以通过Tarjan算法来解决,我们接下来考虑删除一个割点后会产生多少个联通块。在Tarjan算法中,我们判断一个点是否是割点是通过其子结点能否回到遍历过的结点来判断。如果当前遍历的结点存在一个子结点不能够回到已经遍历过的结点,那么当前遍历的结点便是一个割点(这样的依
- 矩阵求逆(JAVA)初等行变换
qiuwanchi
矩阵求逆(JAVA)
package gaodai.matrix;
import gaodai.determinant.DeterminantCalculation;
import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;
/**
* 矩阵求逆(初等行变换)
* @author 邱万迟
*
- JDK timer
antlove
javajdkschedulecodetimer
1.java.util.Timer.schedule(TimerTask task, long delay):多长时间(毫秒)后执行任务
2.java.util.Timer.schedule(TimerTask task, Date time):设定某个时间执行任务
3.java.util.Timer.schedule(TimerTask task, long delay,longperiod
- JVM调优总结 -Xms -Xmx -Xmn -Xss
coder_xpf
jvm应用服务器
堆大小设置JVM 中最大堆大小有三方面限制:相关操作系统的数据模型(32-bt还是64-bit)限制;系统的可用虚拟内存限制;系统的可用物理内存限制。32位系统下,一般限制在1.5G~2G;64为操作系统对内存无限制。我在Windows Server 2003 系统,3.5G物理内存,JDK5.0下测试,最大可设置为1478m。
典型设置:
java -Xmx
- JDBC连接数据库
Array_06
jdbc
package Util;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;
public class JDBCUtil {
//完
- Unsupported major.minor version 51.0(jdk版本错误)
oloz
java
java.lang.UnsupportedClassVersionError: cn/support/cache/CacheType : Unsupported major.minor version 51.0 (unable to load class cn.support.cache.CacheType)
at org.apache.catalina.loader.WebappClassL
- 用多个线程处理1个List集合
362217990
多线程threadlist集合
昨天发了一个提问,启动5个线程将一个List中的内容,然后将5个线程的内容拼接起来,由于时间比较急迫,自己就写了一个Demo,希望对菜鸟有参考意义。。
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.CountDownLatch;
public c
- JSP简单访问数据库
香水浓
sqlmysqljsp
学习使用javaBean,代码很烂,仅为留个脚印
public class DBHelper {
private String driverName;
private String url;
private String user;
private String password;
private Connection connection;
privat
- Flex4中使用组件添加柱状图、饼状图等图表
AdyZhang
Flex
1.添加一个最简单的柱状图
? 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
<?xml version=
"1.0"&n
- Android 5.0 - ProgressBar 进度条无法展示到按钮的前面
aijuans
android
在低于SDK < 21 的版本中,ProgressBar 可以展示到按钮前面,并且为之在按钮的中间,但是切换到android 5.0后进度条ProgressBar 展示顺序变化了,按钮再前面,ProgressBar 在后面了我的xml配置文件如下:
[html]
view plain
copy
<RelativeLa
- 查询汇总的sql
baalwolf
sql
select list.listname, list.createtime,listcount from dream_list as list , (select listid,count(listid) as listcount from dream_list_user group by listid order by count(
- Linux du命令和df命令区别
BigBird2012
linux
1,两者区别
du,disk usage,是通过搜索文件来计算每个文件的大小然后累加,du能看到的文件只是一些当前存在的,没有被删除的。他计算的大小就是当前他认为存在的所有文件大小的累加和。
- AngularJS中的$apply,用还是不用?
bijian1013
JavaScriptAngularJS$apply
在AngularJS开发中,何时应该调用$scope.$apply(),何时不应该调用。下面我们透彻地解释这个问题。
但是首先,让我们把$apply转换成一种简化的形式。
scope.$apply就像一个懒惰的工人。它需要按照命
- [Zookeeper学习笔记十]Zookeeper源代码分析之ClientCnxn数据序列化和反序列化
bit1129
zookeeper
ClientCnxn是Zookeeper客户端和Zookeeper服务器端进行通信和事件通知处理的主要类,它内部包含两个类,1. SendThread 2. EventThread, SendThread负责客户端和服务器端的数据通信,也包括事件信息的传输,EventThread主要在客户端回调注册的Watchers进行通知处理
ClientCnxn构造方法
&
- 【Java命令一】jmap
bit1129
Java命令
jmap命令的用法:
[hadoop@hadoop sbin]$ jmap
Usage:
jmap [option] <pid>
(to connect to running process)
jmap [option] <executable <core>
(to connect to a
- Apache 服务器安全防护及实战
ronin47
此文转自IBM.
Apache 服务简介
Web 服务器也称为 WWW 服务器或 HTTP 服务器 (HTTP Server),它是 Internet 上最常见也是使用最频繁的服务器之一,Web 服务器能够为用户提供网页浏览、论坛访问等等服务。
由于用户在通过 Web 浏览器访问信息资源的过程中,无须再关心一些技术性的细节,而且界面非常友好,因而 Web 在 Internet 上一推出就得到
- unity 3d实例化位置出现布置?
brotherlamp
unity教程unityunity资料unity视频unity自学
问:unity 3d实例化位置出现布置?
答:实例化的同时就可以指定被实例化的物体的位置,即 position
Instantiate (original : Object, position : Vector3, rotation : Quaternion) : Object
这样你不需要再用Transform.Position了,
如果你省略了第二个参数(
- 《重构,改善现有代码的设计》第八章 Duplicate Observed Data
bylijinnan
java重构
import java.awt.Color;
import java.awt.Container;
import java.awt.FlowLayout;
import java.awt.Label;
import java.awt.TextField;
import java.awt.event.FocusAdapter;
import java.awt.event.FocusE
- struts2更改struts.xml配置目录
chiangfai
struts.xml
struts2默认是读取classes目录下的配置文件,要更改配置文件目录,比如放在WEB-INF下,路径应该写成../struts.xml(非/WEB-INF/struts.xml)
web.xml文件修改如下:
<filter>
<filter-name>struts2</filter-name>
<filter-class&g
- redis做缓存时的一点优化
chenchao051
redishadooppipeline
最近集群上有个job,其中需要短时间内频繁访问缓存,大概7亿多次。我这边的缓存是使用redis来做的,问题就来了。
首先,redis中存的是普通kv,没有考虑使用hash等解结构,那么以为着这个job需要访问7亿多次redis,导致效率低,且出现很多redi
- mysql导出数据不输出标题行
daizj
mysql数据导出去掉第一行去掉标题
当想使用数据库中的某些数据,想将其导入到文件中,而想去掉第一行的标题是可以加上-N参数
如通过下面命令导出数据:
mysql -uuserName -ppasswd -hhost -Pport -Ddatabase -e " select * from tableName" > exportResult.txt
结果为:
studentid
- phpexcel导出excel表简单入门示例
dcj3sjt126com
PHPExcelphpexcel
先下载PHPEXCEL类文件,放在class目录下面,然后新建一个index.php文件,内容如下
<?php
error_reporting(E_ALL);
ini_set('display_errors', TRUE);
ini_set('display_startup_errors', TRUE);
if (PHP_SAPI == 'cli')
die('
- 爱情格言
dcj3sjt126com
格言
1) I love you not because of who you are, but because of who I am when I am with you. 我爱你,不是因为你是一个怎样的人,而是因为我喜欢与你在一起时的感觉。 2) No man or woman is worth your tears, and the one who is, won‘t
- 转 Activity 详解——Activity文档翻译
e200702084
androidUIsqlite配置管理网络应用
activity 展现在用户面前的经常是全屏窗口,你也可以将 activity 作为浮动窗口来使用(使用设置了 windowIsFloating 的主题),或者嵌入到其他的 activity (使用 ActivityGroup )中。 当用户离开 activity 时你可以在 onPause() 进行相应的操作 。更重要的是,用户做的任何改变都应该在该点上提交 ( 经常提交到 ContentPro
- win7安装MongoDB服务
geeksun
mongodb
1. 下载MongoDB的windows版本:mongodb-win32-x86_64-2008plus-ssl-3.0.4.zip,Linux版本也在这里下载,下载地址: http://www.mongodb.org/downloads
2. 解压MongoDB在D:\server\mongodb, 在D:\server\mongodb下创建d
- Javascript魔法方法:__defineGetter__,__defineSetter__
hongtoushizi
js
转载自: http://www.blackglory.me/javascript-magic-method-definegetter-definesetter/
在javascript的类中,可以用defineGetter和defineSetter_控制成员变量的Get和Set行为
例如,在一个图书类中,我们自动为Book加上书名符号:
function Book(name){
- 错误的日期格式可能导致走nginx proxy cache时不能进行304响应
jinnianshilongnian
cache
昨天在整合某些系统的nginx配置时,出现了当使用nginx cache时无法返回304响应的情况,出问题的响应头: Content-Type:text/html; charset=gb2312 Date:Mon, 05 Jan 2015 01:58:05 GMT Expires:Mon , 05 Jan 15 02:03:00 GMT Last-Modified:Mon, 05
- 数据源架构模式之行数据入口
home198979
PHP架构行数据入口
注:看不懂的请勿踩,此文章非针对java,java爱好者可直接略过。
一、概念
行数据入口(Row Data Gateway):充当数据源中单条记录入口的对象,每行一个实例。
二、简单实现行数据入口
为了方便理解,还是先简单实现:
<?php
/**
* 行数据入口类
*/
class OrderGateway {
/*定义元数
- Linux各个目录的作用及内容
pda158
linux脚本
1)根目录“/” 根目录位于目录结构的最顶层,用斜线(/)表示,类似于
Windows
操作系统的“C:\“,包含Fedora操作系统中所有的目录和文件。 2)/bin /bin 目录又称为二进制目录,包含了那些供系统管理员和普通用户使用的重要
linux命令的二进制映像。该目录存放的内容包括各种可执行文件,还有某些可执行文件的符号连接。常用的命令有:cp、d
- ubuntu12.04上编译openjdk7
ol_beta
HotSpotjvmjdkOpenJDK
获取源码
从openjdk代码仓库获取(比较慢)
安装mercurial Mercurial是一个版本管理工具。 sudo apt-get install mercurial
将以下内容添加到$HOME/.hgrc文件中,如果没有则自己创建一个: [extensions] forest=/home/lichengwu/hgforest-crew/forest.py fe
- 将数据库字段转换成设计文档所需的字段
vipbooks
设计模式工作正则表达式
哈哈,出差这么久终于回来了,回家的感觉真好!
PowerDesigner的物理数据库一出来,设计文档中要改的字段就多得不计其数,如果要把PowerDesigner中的字段一个个Copy到设计文档中,那将会是一件非常痛苦的事情。