- ConvE——二维卷积知识图谱横空出世
时光诺言
机器学习—图神经网络知识图谱人工智能python卷积神经网络
《Convolutional2DKnowledgeGraphEmbeddings》论文理解+代码复现本论文理解不再翻译原文,只写上我对于论文原生态的理解,应该会比较详细,请读者放心。一.作者为什么要提出ConvE?传统的R-GCN和DistMult的参数量过大,并且模型深度不够深,只能处理较小的知识图谱,所以作者将CNN引入到图神经网络中。二.一维卷积与二维卷积的对比2.1一维卷积当a,b特征简单
- 时序动作定位|使用 ‘注意力机制’ 的弱监督时序动作定位顶会论文理解笔记(Weakly-Supervised Temporal Action Localization)
六个核桃Lu
视频动作定位深度学习人工智能神经网络机器学习计算机视觉
目录WeaklySupervisedActionLocalizationbySparseTemporalPoolingNetwork(CVPR2018)W-TALC:Weakly-supervisedTemporalActivityLocalizationandClassification(ECCV2018)
- 论文理解—— Disentangle-based Continual Graph Representation Learning
qq_26919935
网络表示学习图表示学习知识图谱持续学习
EMNLP2020Disentangle-basedContinualGraphRepresentationLearning链接:https://arxiv.org/abs/2010.02565研究背景:多关系数据表示真实世界中实体和实体之间的关系,其中的节点表示实体,边代表实体之间的关系,比如常见的知识图谱和信息网络等。利用图表示学习方法对多关系图建模一直是学术界和业界关注的热点。图表示学习目的
- Backbone:深层聚合网络:Deep Layer Aggregation(DLA)
AIRV_Gao
论文笔记backbone.js深度学习卷积神经网络
Backbone:DeepLayerAggregation(深层聚合网络,DLA)论文网址:https://arxiv.org/abs/1707.06484论文代码(pytorch):https://github.com/ucbdrive/dla参考博客:DeepLayerAggregation----------论文理解0.摘要DLA是一种融合深层网络的backbone结构。通过更深层次的融合可
- 【论文理解】Spatial Contrastive Learning for Few-Shot Classification
辣椒油li
少样本学习深度学习神经网络少样本学习
内容概览前言一、空间对比学习(SpatialContrastiveLearning)1.对比学习2.全局对比损失3.空间对比损失二、特征的修正三、对比蒸馏(ContrastiveDistillation)四、少样本分类五、实验结果总结前言这篇论文提出了一个采用非episodictraining方法的少样本图像分类算法,作者来自巴黎萨克雷大学,于2020.12.26挂在arxiv上:论文链接这篇论文
- 【论文理解】Batch Normalization论文中关于BN背景和减少内部协变量偏移的解读(论文第1、2节)
takedachia
论文阅读笔记深度学习人工智能神经网络计算机视觉
最近在啃BatchNormalization的原论文(Title:BatchNormalization:AcceleratingDeepNetworkTrainingbyReducingInternalCovariateShift)。详细记录一下对论文前面部分的个人笔记和理解,包括第一部分的Introduction和第二部分的TowardsReducingInternalCovariateShif
- SAM(Segment Anything)论文理解
努力当总裁
人工智能计算机视觉cnn深度学习数据挖掘
【废话可不看】第一次有位教授给我推荐这个Model,我以为只是和往常一样,又出现一个性能稍微提升的算法模型结构,看了一眼名字“分割世间万物”,觉得是个吹水的东东,就没再往下看了。今天老板让我研究研究这个东东,作为打工人,乖乖开启了研究之旅,结果为自己的无知狠狠地打脸!这篇文章具有划时代意义,至少代表了语义分割大模型(没有说视觉大模型,是因为还有分类和检测)的雏形,作者也很慷慨,授人以鱼且授人以渔:
- EfficientDet论文讲解
韩师兄_
算法目标检测论文阅读考研论文笔记
目录EfficientDet0、摘要1、整体架构1.1BackBone:EfficientNet-B01.2Neck:BiFPN特征加强提取网络1.3Head检测头1.4compoundscaling2、anchors先验框3、loss组成4、论文理解5、参考资料EfficientDet影响网络的性能(或者说规模)的三大因素:depth(layer的重复次数),width(特征图channels)
- Prototype-CNN for Few-Shot Object Detection in Remote Sensing Images论文理解
小仝爱吃肥牛
目标检测cnn目标检测神经网络人工智能原型模式
代码:https://github.com/Ybowei/P-CNN目录1.研究背景2.基本概念--Few-ShotObjectDetection3.研究方法PLN--原型学习网络P-GRPN--原型引导的区域生成网络ROIAligh--感兴趣区域对齐Dectionhead--检测头训练策略4.实验结果1.研究背景随着深度学习特别是深度卷积神经网络的兴起,利用其强大的特征提取能力,在自然场景图像中
- BSVD论文理解:Real-time Streaming Video Denoising with Bidirectional Buffers
牧羊女说
图像和视频去噪计算机视觉人工智能深度学习
BSVD是来自香港科技大学的一篇比较新的视频去噪论文,经实践,去噪效果不错,在这里分享一下对这篇论文的理解。论文地址:https://arxiv.org/abs/2207.06937代码地址:GitHub-ChenyangQiQi/BSVD:[ACMMM2022]Real-timeStreamingVideoDenoisingwithBidirectionalBuffers我们都知道,在超低照度拍
- BERT论文理解-理论版
jianafeng
bert自然语言处理深度学习
目录BERT模型架构输入表征预训练任务代码实现Encoder编码器模块BERT模型架构BERT模型架构是一种多层双向变换器(Transformer)编码器。至于什么是变换器的注释及实现,参考哈佛Vaswani等人(2017)的优秀代码指南(http://nlp.seas.harvard.edu/2018/04/03/attention.html)BERT有两种大小:(1)Base版:L=12;H=
- 点云网络的论文理解(二)- PointNet的pytorch复现
BuptBf
PointNet深度学习
1.了解PointNet为了更好的复现这个东西我们需要先了解这个东西,先把原文给出的图片放在这里,之后我们再一点点理解。1.1点云的特点1.1.1无序性:也就是说这个点的先后顺序和实际上是什么无关你不管这些点加入集合的顺序如何,最后的最后他们组成的图形还是那么个图形,也就是说这些东西的顺序是完全没有必要的。所以我们必须使用对称的函数:也就是说,这个函数必须要满足,你怎么调换函数变量的输入顺序,函数
- 【论文理解】FedSky: An Efficient and Privacy-Preserving Scheme for Federated Mobile Crowdsensing
卷卷卷不动
paper论文阅读同态加密
这篇论文同样是来自陆老师组的,发表在IEEEINTERNETOFTHINGSJOURNAL上的一篇关于联邦学习、同态加密的文章。目录论文背景群智感知(CrowdSensing)F-MCS本文的主要贡献模型与设计目标系统模型安全模型设计目标PRELIMINARIESA.FedAvgAlgorithmB.DifferentVariantsofSkylineQueriesC.BilinearPairin
- Adaptive Graph Convolutional Recurrent Network for Traffic Forecasting 论文理解+机翻
顺顺不吃竹笋
剪枝学习深度学习人工智能机器学习
背景:快速的城市化带来了人口的增长,并带来了巨大的流动性和挑战性。在这些挑战中,智能交通系统是一个重要领域,交通预测是城市交通管理的重要部分。问题描述:论文关注的是如何准确的预测未来的交通状况,例如交通流量和速度、乘客需求等。方法:传统的预测方法采用时间序列模型,它们无法捕捉到大规模交通的非线性相关性和复杂的时空模式。论文提出了一种叫做AdaptiveGraphConvolutionalRecur
- 【目标检测】SPP-Net论文理解(超详细版本)
旅途中的宽~
目标检测经典论文导读目标检测深度学习计算机视觉SPPNet
目录:目标检测—SPP-Net论文一、初步认识二、研究背景三、研究动机1.关于图像尺寸的理解2.关于为何全连接层需要固定输入四、SPP-Net作出的改进1.与传统CNN的对比2.与R-CNN的对比1)R-CNN模型2)SPP-Net模型五、SPP-Net中的难点六、原始图像中的ROI如何映射到特征图七、ROI池化层八、总结一、初步认识SPP-Net是出自2015年发表在IEEE上的论文,全名为《S
- yolo3解析
迷途的Go
yolov3解析yolo系列论文看过,源码包调过,抽点时间把论文理解和源码做个一一对应,加深理解,论文https://pjreddie.com/darknet/yolo/源码看的mxnet,gluon-cv,代码地址:https://github.com/dmlc/gluon-cvyolov3networkdarknet53一共53层卷积,除去最后一个FC总共52个卷积用于当做主体网络,主体网络被
- RepVGG论文理解
孟孟单单
论文写作python
目录RepVGG:MakingVGG-styleConvNetsGreatAgain(RepVGG:让vgg风格的ConvNets再次伟大)参考链接结构重参数化的实质3.1.SimpleisFast,Memory-economical,Flexible简单就是快速,节省内存,灵活3.2Training-timeMulti-branchArchitecture培训时-多分支架构3.3Re-param
- 论文理解之面向脑驱动的仿人机器人:基于脑电的BCI异步直接控制
A哆啦A梦
BCI
这篇文章还没有修改很完善,之后会再进行一些修改原论文:TowardBrain-ActuatedHumanoidRobots:AsynchronousDirectControlUsinganEEG-BasedBCI论文链接:https://www.semanticscholar.org/paper/Toward-Brain-Actuated-Humanoid-Robots%3A-Asynchrono
- Focal Loss与GHM 理解与使用
HxShine
Tensorflownlp算法学习总结
一、理解5分钟理解FocalLoss与GHM——解决样本不平衡利器https://zhuanlan.zhihu.com/p/80594704二、使用GHM论文理解及实现https://zheng-yuwei.github.io/2019/07/08/13_GHM%E8%AE%BA%E6%96%87%E7%90%86%E8%A7%A3%E5%8F%8A%E5%AE%9E%E7%8E%B0/ghm-k
- ResNet 论文理解含视频
小喵要摸鱼
ResNet深度残差网络ResNet论文理解
ResNet论文理解问题导引论文理解Q1.神经网络真的越深越好吗?Q2.为什么加深网络会带来退化问题?Q3.如何构建更深层的网络?基于残差的深度学习框架ResidualLearning的理论依据网络结构ResNet的成绩总结视频理解引入恒等映射ResNet论文理解问题导引论文理解ResNet网络的论文名字是《DeepResidualLearningforImageRecognition》,发表在2
- 【计算机视觉 | 扩散模型】新论文 | DragGAN论文:如果甲方想把大象 P 转身,你只需要拖动 GAN 就好了
旅途中的宽~
计算机视觉计算机视觉生成对抗网络深度学习GAN
文章目录一、论文说明二、前言三、论文理解四、实验4.1定性评估4.2定量评估4.3讨论一、论文说明2023年5月18日提交的论文,华人一作。论文地址:https://arxiv.org/pdf/2305.10973.pdf项目地址:https://vcai.mpi-inf.mpg.de/projects/DragGAN/代码地址为:https://github.com/XingangPan/Dra
- 3D深度学习的初步探索(PointNet,PointNet++,Geo-CNN论文理解)
xiaobai_Ry
#点云处理深度学习点云3D检测PointNet
【点云笔记】3D深度学习的初步探索【PointNet,PointNet++,Geo-CNN】概述PPT概览PointNet,PointNet++,Geo-CNN论文PPT自动演示概述下面的PPT及演示是之前课程作业做的,时间已经有些久远(2020年),主要是PointNet,PointNet++,Geo-CNN论文相关要点的介绍。PPT设置的是自动播放模式,对应汇报的语言是调用科大讯飞的机器人语音
- xgboost导读及论文理解
璆_ca09
X-gboost(Extreme-GradientBoosting)优化的分布式梯度提升算法,end-to-end不需要特征抽取。输入原始数据,就能输出目标结果。整篇论文技术实现分两个部分核心点1.算法推导(paper篇幅30%)判别式:判别公式:boosterForest:森林中树的数量,受到max_estimator的约束:森林中的每颗树显而易见,xgboost是非线性(Tree)的加法模型损
- 【音视频第12天】GCC论文阅读(3)
Magic_o
音视频音视频论文阅读
AGoogleCongestionControlAlgorithmforReal-TimeCommunicationdraft-alvestrand-rmcat-congestion-03论文理解看中文的GCC算法一脸懵。看一看英文版的,找一找感觉。目录Abstract1.Introduction1.1Mathematicalnotationconventions2.Systemmodel2.1q
- 【音视频第10天】GCC论文阅读(1)
Magic_o
音视频音视频论文阅读
AGoogleCongestionControlAlgorithmforReal-TimeCommunicationdraft-alvestrand-rmcat-congestion-03论文理解看中文的GCC算法一脸懵。看一看英文版的,找一找感觉。目录Abstract1.Introduction1.1Mathematicalnotationconventions2.Systemmodel3.Fe
- 【音视频第11天】GCC论文阅读(2)
Magic_o
音视频音视频论文阅读ffmpeg
AGoogleCongestionControlAlgorithmforReal-TimeCommunicationdraft-alvestrand-rmcat-congestion-03论文理解看中文的GCC算法一脸懵。看一看英文版的,找一找感觉。目录Abstract1.Introduction1.1Mathematicalnotationconventions2.Systemmodel3.Fe
- Segmentation-driven 6D Object Pose Estimation论文理解
KirutoCode
6DEoF
文章目录本文创新点\贡献方法方法概述分割流回归流训练最终loss推理实验结果总结本文创新点\贡献分割驱动,让每个可以看到的部分都对关键点位置的预测做出贡献方法方法概述假设:物体是刚体且CAD模型已知。对输入的图片做卷积,然后产生分割和预测,将图片分成S×SS\timesSS×S个网格,每个网格都i预测属于的类别并回归关键点的位置,关键点在这里就是交点,然后根据2D-3D对应来做EPnP分割流对每个
- Position-aware Attention and Supervised Data Improve Slot Filling论文理解
qzlydao
论文题目:Position-awareAttentionandSupervisedDataImproveSlotFilling发表作者:YuhaoZhang,VictorZhong,DanqiChen,GaborAngeli,ChristopherD.Manning出版源:Proceedingsofthe2017ConferenceonEmpiricalMethodsinNaturalLangua
- 基于Starts的自制Ekstaz回归测试系统设计与实现 毕业论文++英文论文+答辩PPT+演示视频+项目源码
毕业设计论文资料
目录自制Ekstazi11.缘起12.论文理解11.依赖格式22.分析(A)阶段23.执行(E)阶段34.收集(C)阶段35.非调试校验和33.项目结构&原理讲解3自制Ekstazi1.缘起在自动化测试这门课程中,我学习到了有关源码级测试、移动端测试、智能软件测试的知识,并且对源码级测试产生了浓厚的兴趣。我们知道,回归测试是当今自动化测试研究的热门重点之一,项目中平均80%的测试成本都用在了回归测
- 【目标识别学习笔记系列】一、RCNN论文理解
zl3090
目标识别深度学习
前言:本文是在总结以下博客的基础上对RCNN的理解,感谢原作者文章,使我收获很大,在此整理笔记,仅作学习用途。https://blog.csdn.net/shenxiaolu1984/article/details/51066975https://blog.csdn.net/u011534057/article/details/51218250RegionCNN(RCNN)可以说是利用深度学习进行
- [黑洞与暗粒子]没有光的世界
comsci
无论是相对论还是其它现代物理学,都显然有个缺陷,那就是必须有光才能够计算
但是,我相信,在我们的世界和宇宙平面中,肯定存在没有光的世界....
那么,在没有光的世界,光子和其它粒子的规律无法被应用和考察,那么以光速为核心的
&nbs
- jQuery Lazy Load 图片延迟加载
aijuans
jquery
基于 jQuery 的图片延迟加载插件,在用户滚动页面到图片之后才进行加载。
对于有较多的图片的网页,使用图片延迟加载,能有效的提高页面加载速度。
版本:
jQuery v1.4.4+
jQuery Lazy Load v1.7.2
注意事项:
需要真正实现图片延迟加载,必须将真实图片地址写在 data-original 属性中。若 src
- 使用Jodd的优点
Kai_Ge
jodd
1. 简化和统一 controller ,抛弃 extends SimpleFormController ,统一使用 implements Controller 的方式。
2. 简化 JSP 页面的 bind, 不需要一个字段一个字段的绑定。
3. 对 bean 没有任何要求,可以使用任意的 bean 做为 formBean。
使用方法简介
- jpa Query转hibernate Query
120153216
Hibernate
public List<Map> getMapList(String hql,
Map map) {
org.hibernate.Query jpaQuery = entityManager.createQuery(hql);
if (null != map) {
for (String parameter : map.keySet()) {
jp
- Django_Python3添加MySQL/MariaDB支持
2002wmj
mariaDB
现状
首先,
[email protected] 中默认的引擎为 django.db.backends.mysql 。但是在Python3中如果这样写的话,会发现 django.db.backends.mysql 依赖 MySQLdb[5] ,而 MySQLdb 又不兼容 Python3 于是要找一种新的方式来继续使用MySQL。 MySQL官方的方案
首先据MySQL文档[3]说,自从MySQL
- 在SQLSERVER中查找消耗IO最多的SQL
357029540
SQL Server
返回做IO数目最多的50条语句以及它们的执行计划。
select top 50
(total_logical_reads/execution_count) as avg_logical_reads,
(total_logical_writes/execution_count) as avg_logical_writes,
(tot
- spring UnChecked 异常 官方定义!
7454103
spring
如果你接触过spring的 事物管理!那么你必须明白 spring的 非捕获异常! 即 unchecked 异常! 因为 spring 默认这类异常事物自动回滚!!
public static boolean isCheckedException(Throwable ex)
{
return !(ex instanceof RuntimeExcep
- mongoDB 入门指南、示例
adminjun
javamongodb操作
一、准备工作
1、 下载mongoDB
下载地址:http://www.mongodb.org/downloads
选择合适你的版本
相关文档:http://www.mongodb.org/display/DOCS/Tutorial
2、 安装mongoDB
A、 不解压模式:
将下载下来的mongoDB-xxx.zip打开,找到bin目录,运行mongod.exe就可以启动服务,默
- CUDA 5 Release Candidate Now Available
aijuans
CUDA
The CUDA 5 Release Candidate is now available at http://developer.nvidia.com/<wbr></wbr>cuda/cuda-pre-production. Now applicable to a broader set of algorithms, CUDA 5 has advanced fe
- Essential Studio for WinRT网格控件测评
Axiba
JavaScripthtml5
Essential Studio for WinRT界面控件包含了商业平板应用程序开发中所需的所有控件,如市场上运行速度最快的grid 和chart、地图、RDL报表查看器、丰富的文本查看器及图表等等。同时,该控件还包含了一组独特的库,用于从WinRT应用程序中生成Excel、Word以及PDF格式的文件。此文将对其另外一个强大的控件——网格控件进行专门的测评详述。
网格控件功能
1、
- java 获取windows系统安装的证书或证书链
bewithme
windows
有时需要获取windows系统安装的证书或证书链,比如说你要通过证书来创建java的密钥库 。
有关证书链的解释可以查看此处 。
public static void main(String[] args) {
SunMSCAPI providerMSCAPI = new SunMSCAPI();
S
- NoSQL数据库之Redis数据库管理(set类型和zset类型)
bijian1013
redis数据库NoSQL
4.sets类型
Set是集合,它是string类型的无序集合。set是通过hash table实现的,添加、删除和查找的复杂度都是O(1)。对集合我们可以取并集、交集、差集。通过这些操作我们可以实现sns中的好友推荐和blog的tag功能。
sadd:向名称为key的set中添加元
- 异常捕获何时用Exception,何时用Throwable
bingyingao
用Exception的情况
try {
//可能发生空指针、数组溢出等异常
} catch (Exception e) {
 
- 【Kafka四】Kakfa伪分布式安装
bit1129
kafka
在http://bit1129.iteye.com/blog/2174791一文中,实现了单Kafka服务器的安装,在Kafka中,每个Kafka服务器称为一个broker。本文简单介绍下,在单机环境下Kafka的伪分布式安装和测试验证 1. 安装步骤
Kafka伪分布式安装的思路跟Zookeeper的伪分布式安装思路完全一样,不过比Zookeeper稍微简单些(不
- Project Euler
bookjovi
haskell
Project Euler是个数学问题求解网站,网站设计的很有意思,有很多problem,在未提交正确答案前不能查看problem的overview,也不能查看关于problem的discussion thread,只能看到现在problem已经被多少人解决了,人数越多往往代表问题越容易。
看看problem 1吧:
Add all the natural num
- Java-Collections Framework学习与总结-ArrayDeque
BrokenDreams
Collections
表、栈和队列是三种基本的数据结构,前面总结的ArrayList和LinkedList可以作为任意一种数据结构来使用,当然由于实现方式的不同,操作的效率也会不同。
这篇要看一下java.util.ArrayDeque。从命名上看
- 读《研磨设计模式》-代码笔记-装饰模式-Decorator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.io.BufferedOutputStream;
import java.io.DataOutputStream;
import java.io.FileOutputStream;
import java.io.Fi
- Maven学习(一)
chenyu19891124
Maven私服
学习一门技术和工具总得花费一段时间,5月底6月初自己学习了一些工具,maven+Hudson+nexus的搭建,对于maven以前只是听说,顺便再自己的电脑上搭建了一个maven环境,但是完全不了解maven这一强大的构建工具,还有ant也是一个构建工具,但ant就没有maven那么的简单方便,其实简单点说maven是一个运用命令行就能完成构建,测试,打包,发布一系列功
- [原创]JWFD工作流引擎设计----节点匹配搜索算法(用于初步解决条件异步汇聚问题) 补充
comsci
算法工作PHP搜索引擎嵌入式
本文主要介绍在JWFD工作流引擎设计中遇到的一个实际问题的解决方案,请参考我的博文"带条件选择的并行汇聚路由问题"中图例A2描述的情况(http://comsci.iteye.com/blog/339756),我现在把我对图例A2的一个解决方案公布出来,请大家多指点
节点匹配搜索算法(用于解决标准对称流程图条件汇聚点运行控制参数的算法)
需要解决的问题:已知分支
- Linux中用shell获取昨天、明天或多天前的日期
daizj
linuxshell上几年昨天获取上几个月
在Linux中可以通过date命令获取昨天、明天、上个月、下个月、上一年和下一年
# 获取昨天
date -d 'yesterday' # 或 date -d 'last day'
# 获取明天
date -d 'tomorrow' # 或 date -d 'next day'
# 获取上个月
date -d 'last month'
#
- 我所理解的云计算
dongwei_6688
云计算
在刚开始接触到一个概念时,人们往往都会去探寻这个概念的含义,以达到对其有一个感性的认知,在Wikipedia上关于“云计算”是这么定义的,它说:
Cloud computing is a phrase used to describe a variety of computing co
- YII CMenu配置
dcj3sjt126com
yii
Adding id and class names to CMenu
We use the id and htmlOptions to accomplish this. Watch.
//in your view
$this->widget('zii.widgets.CMenu', array(
'id'=>'myMenu',
'items'=>$this-&g
- 设计模式之静态代理与动态代理
come_for_dream
设计模式
静态代理与动态代理
代理模式是java开发中用到的相对比较多的设计模式,其中的思想就是主业务和相关业务分离。所谓的代理设计就是指由一个代理主题来操作真实主题,真实主题执行具体的业务操作,而代理主题负责其他相关业务的处理。比如我们在进行删除操作的时候需要检验一下用户是否登陆,我们可以删除看成主业务,而把检验用户是否登陆看成其相关业务
- 【转】理解Javascript 系列
gcc2ge
JavaScript
理解Javascript_13_执行模型详解
摘要: 在《理解Javascript_12_执行模型浅析》一文中,我们初步的了解了执行上下文与作用域的概念,那么这一篇将深入分析执行上下文的构建过程,了解执行上下文、函数对象、作用域三者之间的关系。函数执行环境简单的代码:当调用say方法时,第一步是创建其执行环境,在创建执行环境的过程中,会按照定义的先后顺序完成一系列操作:1.首先会创建一个
- Subsets II
hcx2013
set
Given a collection of integers that might contain duplicates, nums, return all possible subsets.
Note:
Elements in a subset must be in non-descending order.
The solution set must not conta
- Spring4.1新特性——Spring缓存框架增强
jinnianshilongnian
spring4
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- shell嵌套expect执行命令
liyonghui160com
一直都想把expect的操作写到bash脚本里,这样就不用我再写两个脚本来执行了,搞了一下午终于有点小成就,给大家看看吧.
系统:centos 5.x
1.先安装expect
yum -y install expect
2.脚本内容:
cat auto_svn.sh
#!/bin/bash
- Linux实用命令整理
pda158
linux
0. 基本命令 linux 基本命令整理
1. 压缩 解压 tar -zcvf a.tar.gz a #把a压缩成a.tar.gz tar -zxvf a.tar.gz #把a.tar.gz解压成a
2. vim小结 2.1 vim替换 :m,ns/word_1/word_2/gc  
- 独立开发人员通向成功的29个小贴士
shoothao
独立开发
概述:本文收集了关于独立开发人员通向成功需要注意的一些东西,对于具体的每个贴士的注解有兴趣的朋友可以查看下面标注的原文地址。
明白你从事独立开发的原因和目的。
保持坚持制定计划的好习惯。
万事开头难,第一份订单是关键。
培养多元化业务技能。
提供卓越的服务和品质。
谨小慎微。
营销是必备技能。
学会组织,有条理的工作才是最有效率的。
“独立
- JAVA中堆栈和内存分配原理
uule
java
1、栈、堆
1.寄存器:最快的存储区, 由编译器根据需求进行分配,我们在程序中无法控制.2. 栈:存放基本类型的变量数据和对象的引用,但对象本身不存放在栈中,而是存放在堆(new 出来的对象)或者常量池中(字符串常量对象存放在常量池中。)3. 堆:存放所有new出来的对象。4. 静态域:存放静态成员(static定义的)5. 常量池:存放字符串常量和基本类型常量(public static f