面对缺失值三种处理方法:
对于dropna和fillna,dataframe和series都有,在这主要讲datafame的
使用DataFrame.dropna(axis=0, how='any', thresh=None, subset=None, inplace=False)
参数说明:
建议在使用时将全部的缺省参数都写上,便于快速理解
examples:
df = pd.DataFrame(
{"name": ['Alfred', 'Batman', 'Catwoman'],
"toy": [np.nan, 'Batmobile', 'Bullwhip'],
"born": [pd.NaT, pd.Timestamp("1940-04-25")
pd.NaT]})
>>> df
name toy born
0 Alfred NaN NaT
1 Batman Batmobile 1940-04-25
2 Catwoman Bullwhip NaT
# Drop the rows where at least one element is missing.
>>> df.dropna()
name toy born
1 Batman Batmobile 1940-04-25
# Drop the columns where at least one element is missing.
>>> df.dropna(axis='columns')
name
0 Alfred
1 Batman
2 Catwoman
# Drop the rows where all elements are missing.
>>> df.dropna(how='all')
name toy born
0 Alfred NaN NaT
1 Batman Batmobile 1940-04-25
2 Catwoman Bullwhip NaT
# Keep only the rows with at least 2 non-NA values.
>>> df.dropna(thresh=2)
name toy born
1 Batman Batmobile 1940-04-25
2 Catwoman Bullwhip NaT
# Define in which columns to look for missing values.
>>> df.dropna(subset=['name', 'born'])
name toy born
1 Batman Batmobile 1940-04-25
# Keep the DataFrame with valid entries in the same variable.
>>> df.dropna(inplace=True)
>>> df
name toy born
1 Batman Batmobile 1940-04-25
可以使用dropna 或者drop函数
DataFrame.drop(labels=None, axis=0, index=None, columns=None, level=None, inplace=False, errors='raise')
df = pd.DataFrame(np.arange(12).reshape(3,4),
columns=['A', 'B', 'C', 'D'])
>>>df
A B C D
0 0 1 2 3
1 4 5 6 7
2 8 9 10 11
# 删除列
>>> df.drop(['B', 'C'], axis=1)
A D
0 0 3
1 4 7
2 8 11
>>> df.drop(columns=['B', 'C'])
A D
0 0 3
1 4 7
2 8 11
# 删除行(索引)
>>> df.drop([0, 1])
A B C D
2 8 9 10 11
使用DataFrame.fillna(value=None, method=None, axis=None, inplace=False, limit=None, downcast=None, **kwargs)
f = pd.DataFrame([[np.nan, 2, np.nan, 0],
[3, 4, np.nan, 1],
[np.nan, np.nan, np.nan, 5],
[np.nan, 3, np.nan, 4]],
columns=list('ABCD'))
>>> df
A B C D
0 NaN 2.0 NaN 0
1 3.0 4.0 NaN 1
2 NaN NaN NaN 5
3 NaN 3.0 NaN 4
# 使用0代替所有的缺失值
>>> df.fillna(0)
A B C D
0 0.0 2.0 0.0 0
1 3.0 4.0 0.0 1
2 0.0 0.0 0.0 5
3 0.0 3.0 0.0 4
# 使用后边或前边的值填充缺失值
>>> df.fillna(method='ffill')
A B C D
0 NaN 2.0 NaN 0
1 3.0 4.0 NaN 1
2 3.0 4.0 NaN 5
3 3.0 3.0 NaN 4
>>>df.fillna(method='bfill')
A B C D
0 3.0 2.0 NaN 0
1 3.0 4.0 NaN 1
2 NaN 3.0 NaN 5
3 NaN 3.0 NaN 4
# Replace all NaN elements in column ‘A’, ‘B’, ‘C’, and ‘D’, with 0, 1, 2, and 3 respectively.
# 每一列使用不同的缺失值
>>> values = {'A': 0, 'B': 1, 'C': 2, 'D': 3}
>>> df.fillna(value=values)
A B C D
0 0.0 2.0 2.0 0
1 3.0 4.0 2.0 1
2 0.0 1.0 2.0 5
3 0.0 3.0 2.0 4
#只替换第一个缺失值
>>>df.fillna(value=values, limit=1)
A B C D
0 0.0 2.0 2.0 0
1 3.0 4.0 NaN 1
2 NaN 1.0 NaN 5
3 NaN 3.0 NaN 4
房价分析:
在此问题中,只有bedroom一列有缺失值,按照此三种方法处理代码为:
# option 1 将含有缺失值的行去掉
housing.dropna(subset=["total_bedrooms"])
# option 2 将"total_bedrooms"这一列从数据中去掉
housing.drop("total_bedrooms", axis=1)
# option 3 使用"total_bedrooms"的中值填充缺失值
median = housing["total_bedrooms"].median()
housing["total_bedrooms"].fillna(median)