朴素贝叶斯基本思想特点一般过程示例1基本思想朴素贝叶斯的基本思想就是选择高概率对应的类别,即如果有两类,若p1(x,y)>p2(x,y),则分类类别为1若p1(x,y)
机器学习实战学习笔记(十)使用Apriori算法进行关联分析
Hold_My_Own
机器学习Apriori机器学习
PS:该系列数据都可以在图灵社区(点击此链接)中随书下载中下载(如下) 从大规模数据集中寻找物品间的隐含关系被称作关联分析(associationanalysis)或者关联规则学习(associationrulelearning)。1关联分析Apriori算法优点:易编码实现。缺点:在大数据集上可能较慢。使用数据类型:数值型或者标称型数据。 关联分析是一种在大规模数据集中寻找有趣关系的任务。这
机器学习实战学习笔记(九)K-均值聚类算法
Hold_My_Own
机器学习K-Means聚类机器学习
PS:该系列数据都可以在图灵社区(点击此链接)中随书下载中下载(如下) 聚类是一种无监督的学习,它将相似的对象归到同一个簇中。它有点像全自动分类,聚类方法几乎可以应用于所有对象,簇内的对象越相似,聚类的效果越好。K-均值(K-means)聚类算法,之所以称之为K-均值是因为它可以发现k个不同的簇,且每个簇的中心采用簇中所含值的均值计算而成。 簇识别(clusteridentification)
Peter 机器学习实战学习笔记(1)
Liker79
机器学习学习矩阵
shape的简单理解一、shape可以获取数组或矩阵的大小信息(矩阵的行数,列数,数组每一维的元素个数)在矩阵中shape[0]可以获取行数,shape[1]可以获取列数二、numpy中的tilenp.tile()本着函数取名必有所依的原理,博主百度了一下tile的英文意思,发现tile有平铺的意思。1.沿X轴复制在numpy中,np.tile(a,(2))函数的作用就是将函数将函数沿着X轴扩大两
机器学习实战学习笔记(七)预测数值型数据:回归
Hold_My_Own
机器学习回归预测数值型数据机器学习
PS:该系列数据都可以在图灵社区(点击此链接)中随书下载中下载(如下)1用线性回归找到最佳拟合直线线性回归优点:结果易于理解,计算上不复杂。缺点:对非线性的数据拟合不好。适用数据类型:数值型和标称型数据。 假定输入数据存放在矩阵XXX中,而回归系数存放在向量www中。那么对于给定的数据X1X_1X1,预测结果将会通过Y1=X1TwY_1=X_1^TwY1=X1Tw给出。我们常用的方法极速找出使误
机器学习实战学习笔记11——FP-growth 算法
飞鸟2010
python学习笔记python机器学习FP-growth
1.FP-growth算法概述1.1FP-growth算法介绍FP-Growth算法是韩家炜等人在2000年提出的关联分析算法,它采取分治策略:将提供频繁项集的数据库压缩到一棵频繁模式树(FP-tree),但仍保留项集关联信息。1.2FP-growth算法原理FP-growth算法使用了一种称为频繁模式树(FrequentPatternTree)的数据结构。FP-tree是一种特殊的前缀树,由频繁
机器学习实战学习笔记(五)支持向量机
Hold_My_Own
机器学习
PS:该系列数据都可以在图灵社区(点击此链接)中随书下载中下载(如下)1基于最大间隔分隔数据支持向量机(SupportVectorMachines,SVM)优点:泛化错误率低,计算开销不大,结果易于解释。缺点:对参数调节和核函数的选择敏感,原始分类器不加修改仅适用于处理二类问题。使用数据类型:数值型和标称型数据。 假设给定一个特征空间上的训练数据集T={(x1,y1),(x2,y2),...,(
机器学习实战学习笔记4——奇异值分解(SVD)
飞鸟2010
python学习笔记机器学习
1.SVD算法概述1.1SVD算法介绍奇异值分解(SingularValueDecomposition)算法,可以将数据映射到低维空间,常用于从有噪声数据中抽取相关特征。1.2SVD算法原理(1)先利用SVD从数据中构建一个主题空间;(2)然后在该空间下计算相似度;1.3SVD算法优缺点(1)优点:简化数据,去除噪声,提高算法的结果(2)缺点:数据的转换可能难以理解(3)应用:最优化问题、特征值问
【机器学习实战学习笔记(1-2)】k-近邻算法应用实例python代码
进击的AI小白
机器学习
文章目录1.改进约会网站匹配效果1.1准备数据:从文本文件中解析数据1.2分析数据:使用Matplotlib创建散点图1.3准备数据:归一化特征1.4测试算法:作为完整程序验证分类器1.5使用算法:构建完成可用系统2.手写识别系统2.1准备数据:将图像转换为测试向量2.2测试算法:使用k-近邻算法识别手写数字在上一篇文章中我们得到了基于欧式距离、多数表决规则,实现方法采用线性搜索法的k-近邻法cl
机器学习实战学习笔记(十三)利用SVD简化数据
Hold_My_Own
机器学习svd机器学习
PS:该系列数据都可以在图灵社区(点击此链接)中随书下载中下载(如下)1SVD的应用奇异值分解优点:简化数据,去除噪声,提高算法的结果。缺点:数据的转换可能难以理解。适用数据类型:数值型数据。1.1隐形语义索引 最早的SVD应用之一就是信息检索。我们称利用SVD的方法为隐性语义索引(LatentSemanticIndex,LSI)或隐性语义分析(LatentSemanticAnalysis,LS
机器学习实战学习笔记(十二)利用PCA来简化数据
Hold_My_Own
机器学习
PS:该系列数据都可以在图灵社区(点击此链接)中随书下载中下载(如下)1降维技术 对数据进行简化的原因:使得数据集更易使用;降低很多算法的计算开销;去除噪声;使得结果易懂。 主成分分析(PrincipalComponentAnalysis,PCA):在PCA中,数据从原来的坐标系转换到了新的坐标系,新坐标系的选择是由数据本身决定的。第一个新坐标轴选择的是原始数据中方差最大的方向,第二个新坐标轴
机器学习实战学习笔记(十一)使用FP-growth算法来高效发现频繁项集
Hold_My_Own
机器学习
PS:该系列数据都可以在图灵社区(点击此链接)中随书下载中下载(如下) FP-growth算法:比Apriori算法要快。它基于Apriori构建,但是在完成相同任务时采用了一些不同的技术。这里的任务是将数据集存储在一个特定的称作FP树的结构之后发现频繁项集或者频繁相对,即常在一块出现的元素项的集合FP树。这个算法能够更有效地挖掘数据。这种算法虽然能更为高效地发现频繁项集,但不能用于发现关联规则
机器学习实战学习笔记(一)
sakurakdx
1.KNN算法描述简单来说:k-近邻算法(knn)采用测量不同特征值之间的距离算法进行分类优点:精度高、对异常值不敏感、无数据输入假定缺点:计算复杂度高、空间复杂度高适用数据范围:数值型和标称型工作原理:存在一个训练样本集,样本集中每个数据都存在标签。输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似(最近邻)的分类标签。一般来说,只选择样本
机器学习实战学习笔记 ---- K-Means(K-均值)聚类算法
杨鑫newlfe
MachineLearning
聚类是一种无监督的学习,它将相似的对象归到一个簇中,将不相似的对象归到不同的簇中。相似这一概念取决于所选择的相似度计算方式。K-Means是发现给定数据集的K个簇的聚类算法,之所以称之为“K-均”值是因为它可以发现K个不同的簇,且每个簇的中心采用的所含值的均值计算而成。簇个数K是用户指定的,每一个簇通过其质心(centroid),即簇中所有点的中心来描述。聚类与分类算法的最大区别在于,分类的目标类
【机器学习实战学习笔记(2-2)】决策树python3.6实现及简单应用
siplifyit
文章目录1.ID3及C4.5算法基础1.1计算香农熵1.2按照给定特征划分数据集1.3选择最优特征1.4多数表决实现2.基于ID3、C4.5生成算法创建决策树3.使用决策树进行分类4.存储决策树通过决策树原理及相关概念细节我们知道,决策树的学习算法主要包括3个步骤:特征选择、决策树生成算法、决策树剪枝,我们按照这个思路来一一实现相关功能。本文的实现目前主要涉及特征选择、ID3及C4.5算法。剪枝及
【机器学习实战学习笔记(2-1)】决策树原理及相关概念细节
siplifyit
文章目录1.决策树概述1.1基本概念1.2决策树学习概述2.特征选择2.1信息增益(informationgain)2.1.1熵(entropy)2.1.2条件熵(conditionalentropy)2.1.3信息增益计算2.2信息增益比(informationgainration)3.决策树的生成3.1ID3算法3.2C4.5算法4.决策树的剪枝1.决策树概述决策树(decisiontree)
机器学习实战学习笔记
suuunnnyoy
学习笔记
目录统计学习基本概念统计学习三要素1模型2策略(评价准则)损失函数和风险函数经验风险最小化和结构风险最小化一、分类1.K近邻1.1算法概述1.2算法一般流程:1.3算法要素1.3.1距离度量1.3.2k值的选择1.3.3分类决策规则1.4k近邻法的实现:kd树1.4.1构造kd树1.4.2搜索kd树1.5额外的2.决策树2.1算法概述2.2算法流程2.3特征选择2.3.1信息增益2.3.2信息增益
机器学习实战学习笔记一
SilenceHell
机器学习实战学习笔记
一.误差讲的很不错,我最初学机器学习就是看吴恩达的课程,当初他就讲了平方项误差是由高斯分布通过极大似然求得的,当时还不是特别理解,之后很多的教材也没有对这方面进行解释,没想到这里给推导了一遍,很不错。这张幻灯片有一个问题,XθX\thetaXθ都是列变量是不能相乘的,这里应该有一个转置。注意:能用这个方式直接求出结果的条件很苛刻那就是XTXX^TXXTX必须是非奇异矩阵,大部分实际条件下,这个条件
机器学习实战学习笔记(二)
三年二班周杰伦
机器学习
决策树。后面的CART会涉及到剪枝和回归。那个才是重点。这里就简单贴一下代码。frommathimportlog
importoperator
defcreateDataset():
dataSet=[[1,1,'yes'],[1,1,'yes'],[1,0,'no'],[0,1,'no'],[0,1,'no']]
labels=['nosurfacing','flippers']
return
机器学习实战学习笔记(一)
三年二班周杰伦
机器学习
shape的用法numpy.tile()函数numpy.sum()的用法KNN算法和kmeans算法的异同numpy.argsort()字典的get方法python中iteritems()函数一开始看问题还是蛮多的,看python的基础语法看完就忘了,只有到真正需要用的时候才会了解到相应的用法。下面是带注释的代码。fromnumpyimport*
importoperator
fromosimpo
机器学习实战学习笔记
infinitezechan
机器学习实战
Chapter1机器学习基础NumPy函数库基础random.rand(4,4)上述命令构造了4*4的随机数组>>>random.rand(4,4)
array([[0.0418002,0.20941796,0.68781548,0.32148814],[0.39318817,0.46766914,0.49318351,0.65444726],[0.33036255,0.70759215,0.59
机器学习实战学习笔记(三):朴素贝叶斯
test103
机器学习
贝叶斯原理之所以称之为“朴素”,是因为整个形式化过程只做最原始、最简单的假设。优缺点-优点:在数据较少的情况下仍然有效,可以处理多类别问题。-确定:对于输入数据的准备方式比较敏感。-适用数据类型:标称型数据。入门示例二维坐标中,如果p1(x,y)>p2(x,y),那么(x,y)属于类别1,否则属于类别2.共有7块石头,3块灰色的,4块黑色的p(gray)=3/7p(black)=4/7现在将7块石
机器学习实战学习笔记(四):Logistic回归
test103
机器学习
逻辑回归逻辑回归分类的主要思想是:根据现有数据对分类边界线建立回归公式,以此进行分类。优缺点优点:计算代价不高,易于理解和实现。确定:容易欠拟合,分类精度可能不高。适用数据类型:数值型和标称型数据。核心概念sigma函数最大释然估计应用——从疝气病预测病马的死亡率这章不详细描述,请参考书中描述及这篇博客,写的很好(http://sbp810050504.blog.51cto.com/2799422
机器学习实战学习笔记(二):决策树
test103
机器学习
决策树优缺点优点:计算复杂度不高,输出结果易于理解,对中间值的确实不敏感,可以处理不相关特征数据。缺点:可能会产生过度匹配问题。适用数据类型:数值型和标称型。原理树结构信息增益在划分数据集之前之后信息发生的变化称为信息增益。香农商集合信息的度量方式称为香农熵或者简称为熵,这个名字来源于信息论之父克劳德.香农。例子略实际中的应用——预测隐形眼镜类型隐形眼镜数据集是非常著名的数据集。构造树结构。
机器学习实战学习笔记9——Logistic回归
飞鸟2010
python学习笔记机器学习
1.logistic回归概述1.1logistic回归介绍Logistic回归是一种广义的线性回归分析模型,是研究二分类观察结果y与一些影响因素(x_1,x_2,…,x_n)之间关系的一种多变量分析方法。通常研究某些因素条件下某个结果是否发生,比如医学中根据症状来判断病人是否患有某种疾病。1.2Logistic回归原理Logistic回归进行分类的主要思想是:根据现有数据对分类边界线建立回归公式。
机器学习实战学习笔记8——朴素贝叶斯
飞鸟2010
python学习笔记机器学习
1.朴素贝叶斯概述1.1朴素贝叶斯介绍朴素贝叶斯(NaïveBayesian)是基于贝叶斯定理与特征条件独立假设的分类方法。朴素贝叶斯分类器基于一个简单的假设:给定目标值之间属性相互独立。1.2朴素贝叶斯工作原理假设有一个数据集,由两类组成,对于每个样本的分类,都是已知的。现在有一个新的点new_point(x,y),其分类未知。我们可以用p1(x,y)来表示数据点(x,y)属于类别1的概率;用p
机器学习实战学习笔记7——Kmeans
飞鸟2010
python学习笔记机器学习
1.Kmeans算法概述1.1Kmeans算法介绍Kmeans是发现给定数据集的K个簇的算法。簇个数K是用户给定的,每一个簇通过其质心,即簇中所有点的中心来描述。1.2Kmeans算法工作流程(1)创建K个质点作为起始质心;(2)当任意一个点的簇分配结果发生改变时:对数据集中的每个数据点对每个质心计算质心与数据点之间的距离将数据点分配到距其最近的簇对每一个簇,计算簇中所有点的均值并将均值作为质心1
机器学习实战学习笔记6——AdaBoost
飞鸟2010
python学习笔记机器学习
1.AdaBoost概述1.1AdaBoost介绍AdaBoost是一种迭代算法,其核心思想是针对同一训练集训练不同的分类器(弱分类器),然后把这些分类器集合起来,构成一个最终的强分类器。1.2AdaBoost优缺点(1)优点:泛化错误率低,易编码,可以应用在大部分分类器上,无需参数调整。(2)缺点:对离群点敏感。
机器学习实战学习笔记3——支持向量机
飞鸟2010
1.SVM算法概述1.1SVM简介支持向量机(SupportVectorMachine),是90年代中期发展起来的基于统计学习理论的一种机器学习方法,通过寻求结构化风险最小来提高学习机泛化能力,实现经验风险和置信范围的最小化,从而达到在统计样本量较少的情况下,亦能获得良好统计规律的目的。本身是一种监督式学习的方法,广泛应用于统计分类以及回归分析中。1.2SVM工作原理它使用非线性映射,将原训练数据
scala的option和some
矮蛋蛋
编程scala
原文地址:
http://blog.sina.com.cn/s/blog_68af3f090100qkt8.html
对于学习 Scala 的 Java™ 开发人员来说,对象是一个比较自然、简单的入口点。在 本系列 前几期文章中,我介绍了 Scala 中一些面向对象的编程方法,这些方法实际上与 Java 编程的区别不是很大。我还向您展示了 Scala 如何重新应用传统的面向对象概念,找到其缺点
NullPointerException
Cb123456
androidBaseAdapter
java.lang.NullPointerException: Attempt to invoke virtual method 'int android.view.View.getImportantForAccessibility()' on a null object reference
出现以上异常.然后就在baidu上
PHP使用文件和目录
天子之骄
php文件和目录读取和写入php验证文件php锁定文件
PHP使用文件和目录
1.使用include()包含文件
(1):使用include()从一个被包含文档返回一个值
(2):在控制结构中使用include()
include_once()函数需要一个包含文件的路径,此外,第一次调用它的情况和include()一样,如果在脚本执行中再次对同一个文件调用,那么这个文件不会再次包含。
在php.ini文件中设置
SQL SELECT DISTINCT 语句
何必如此
sql
SELECT DISTINCT 语句用于返回唯一不同的值。
SQL SELECT DISTINCT 语句
在表中,一个列可能会包含多个重复值,有时您也许希望仅仅列出不同(distinct)的值。
DISTINCT 关键词用于返回唯一不同的值。
SQL SELECT DISTINCT 语法
SELECT DISTINCT column_name,column_name
F
java冒泡排序
3213213333332132
java冒泡排序
package com.algorithm;
/**
* @Description 冒泡
* @author FuJianyong
* 2015-1-22上午09:58:39
*/
public class MaoPao {
public static void main(String[] args) {
int[] mao = {17,50,26,18,9,10
struts2.18 +json,struts2-json-plugin-2.1.8.1.jar配置及问题!
7454103
DAOspringAjaxjsonqq
struts2.18 出来有段时间了! (貌似是 稳定版)
闲时研究下下! 貌似 sruts2 搭配 json 做 ajax 很吃香!
实践了下下! 不当之处请绕过! 呵呵
网上一大堆 struts2+json 不过大多的json 插件 都是 jsonplugin.34.jar
strut
struts2 数据标签说明
darkranger
jspbeanstrutsservletScheme
数据标签主要用于提供各种数据访问相关的功能,包括显示一个Action里的属性,以及生成国际化输出等功能
数据标签主要包括:
action :该标签用于在JSP页面中直接调用一个Action,通过指定executeResult参数,还可将该Action的处理结果包含到本页面来。
bean :该标签用于创建一个javabean实例。如果指定了id属性,则可以将创建的javabean实例放入Sta
链表.简单的链表节点构建
aijuans
编程技巧
/*编程环境WIN-TC*/ #include "stdio.h" #include "conio.h"
#define NODE(name, key_word, help) \ Node name[1]={{NULL, NULL, NULL, key_word, help}}
typedef struct node { &nbs
tomcat下jndi的三种配置方式
avords
tomcat
jndi(Java Naming and Directory Interface,Java命名和目录接口)是一组在Java应用中访问命名和目录服务的API。命名服务将名称和对象联系起来,使得我们可以用名称
访问对象。目录服务是一种命名服务,在这种服务里,对象不但有名称,还有属性。
tomcat配置
关于敏捷的一些想法
houxinyou
敏捷
从网上看到这样一句话:“敏捷开发的最重要目标就是:满足用户多变的需求,说白了就是最大程度的让客户满意。”
感觉表达的不太清楚。
感觉容易被人误解的地方主要在“用户多变的需求”上。
第一种多变,实际上就是没有从根本上了解了用户的需求。用户的需求实际是稳定的,只是比较多,也比较混乱,用户一般只能了解自己的那一小部分,所以没有用户能清楚的表达出整体需求。而由于各种条件的,用户表达自己那一部分时也有
富养还是穷养,决定孩子的一生
bijian1013
教育人生
是什么决定孩子未来物质能否丰盛?为什么说寒门很难出贵子,三代才能出贵族?真的是父母必须有钱,才能大概率保证孩子未来富有吗?-----作者:@李雪爱与自由
事实并非由物质决定,而是由心灵决定。一朋友富有而且修养气质很好,兄弟姐妹也都如此。她的童年时代,物质上大家都很贫乏,但妈妈总是保持生活中的美感,时不时给孩子们带回一些美好小玩意,从来不对孩子传递生活艰辛、金钱来之不易、要懂得珍惜
oracle 日期时间格式转化
征客丶
oracle
oracle 系统时间有 SYSDATE 与 SYSTIMESTAMP;
SYSDATE:不支持毫秒,取的是系统时间;
SYSTIMESTAMP:支持毫秒,日期,时间是给时区转换的,秒和毫秒是取的系统的。
日期转字符窜:
一、不取毫秒:
TO_CHAR(SYSDATE, 'YYYY-MM-DD HH24:MI:SS')
简要说明,
YYYY 年
MM 月
【Scala六】分析Spark源代码总结的Scala语法四
bit1129
scala
1. apply语法
FileShuffleBlockManager中定义的类ShuffleFileGroup,定义:
private class ShuffleFileGroup(val shuffleId: Int, val fileId: Int, val files: Array[File]) {
...
def apply(bucketId
Erlang中有意思的bug
bookjovi
erlang
代码中常有一些很搞笑的bug,如下面的一行代码被调用两次(Erlang beam)
commit f667e4a47b07b07ed035073b94d699ff5fe0ba9b
Author: Jovi Zhang <
[email protected]>
Date: Fri Dec 2 16:19:22 2011 +0100
erts:
移位打印10进制数转16进制-2008-08-18
ljy325
java基础
/**
* Description 移位打印10进制的16进制形式
* Creation Date 15-08-2008 9:00
* @author 卢俊宇
* @version 1.0
*
*/
public class PrintHex {
// 备选字符
static final char di
读《研磨设计模式》-代码笔记-组合模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
abstract class Component {
public abstract void printStruct(Str
利用cmd命令将.class文件打包成jar
chenyu19891124
cmdjar
cmd命令打jar是如下实现:
在运行里输入cmd,利用cmd命令进入到本地的工作盘符。(如我的是D盘下的文件有此路径 D:\workspace\prpall\WEB-INF\classes)
现在是想把D:\workspace\prpall\WEB-INF\classes路径下所有的文件打包成prpall.jar。然后继续如下操作:
cd D: 回车
cd workspace/prpal
[原创]JWFD v0.96 工作流系统二次开发包 for Eclipse 简要说明
comsci
eclipse设计模式算法工作swing
JWFD v0.96 工作流系统二次开发包 for Eclipse 简要说明
&nb
SecureCRT右键粘贴的设置
daizj
secureCRT右键粘贴
一般都习惯鼠标右键自动粘贴的功能,对于SecureCRT6.7.5 ,这个功能也已经是默认配置了。
老版本的SecureCRT其实也有这个功能,只是不是默认设置,很多人不知道罢了。
菜单:
Options->Global Options ...->Terminal
右边有个Mouse的选项块。
Copy on Select
Paste on Right/Middle
Linux 软链接和硬链接
dongwei_6688
linux
1.Linux链接概念Linux链接分两种,一种被称为硬链接(Hard Link),另一种被称为符号链接(Symbolic Link)。默认情况下,ln命令产生硬链接。
【硬连接】硬连接指通过索引节点来进行连接。在Linux的文件系统中,保存在磁盘分区中的文件不管是什么类型都给它分配一个编号,称为索引节点号(Inode Index)。在Linux中,多个文件名指向同一索引节点是存在的。一般这种连
DIV底部自适应
dcj3sjt126com
JavaScript
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
Centos6.5使用yum安装mysql——快速上手必备
dcj3sjt126com
mysql
第1步、yum安装mysql
[root@stonex ~]# yum -y install mysql-server
安装结果:
Installed:
mysql-server.x86_64 0:5.1.73-3.el6_5 &nb
如何调试JDK源码
frank1234
jdk
相信各位小伙伴们跟我一样,想通过JDK源码来学习Java,比如collections包,java.util.concurrent包。
可惜的是sun提供的jdk并不能查看运行中的局部变量,需要重新编译一下rt.jar。
下面是编译jdk的具体步骤:
1.把C:\java\jdk1.6.0_26\sr
Maximal Rectangle
hcx2013
max
Given a 2D binary matrix filled with 0's and 1's, find the largest rectangle containing all ones and return its area.
public class Solution {
public int maximalRectangle(char[][] matrix)
Spring MVC测试框架详解——服务端测试
jinnianshilongnian
spring mvc test
随着RESTful Web Service的流行,测试对外的Service是否满足期望也变的必要的。从Spring 3.2开始Spring了Spring Web测试框架,如果版本低于3.2,请使用spring-test-mvc项目(合并到spring3.2中了)。
Spring MVC测试框架提供了对服务器端和客户端(基于RestTemplate的客户端)提供了支持。
&nbs
Linux64位操作系统(CentOS6.6)上如何编译hadoop2.4.0
liyong0802
hadoop
一、准备编译软件
1.在官网下载jdk1.7、maven3.2.1、ant1.9.4,解压设置好环境变量就可以用。
环境变量设置如下:
(1)执行vim /etc/profile
(2)在文件尾部加入:
export JAVA_HOME=/home/spark/jdk1.7
export MAVEN_HOME=/ho
StatusBar 字体白色
pangyulei
status
[[UIApplication sharedApplication] setStatusBarStyle:UIStatusBarStyleLightContent];
/*you'll also need to set UIViewControllerBasedStatusBarAppearance to NO in the plist file if you use this method
如何分析Java虚拟机死锁
sesame
javathreadoracle虚拟机jdbc
英文资料:
Thread Dump and Concurrency Locks
Thread dumps are very useful for diagnosing synchronization related problems such as deadlocks on object monitors. Ctrl-\ on Solaris/Linux or Ctrl-B
位运算简介及实用技巧(一):基础篇
tw_wangzhengquan
位运算
http://www.matrix67.com/blog/archives/263
去年年底写的关于位运算的日志是这个Blog里少数大受欢迎的文章之一,很多人都希望我能不断完善那篇文章。后来我看到了不少其它的资料,学习到了更多关于位运算的知识,有了重新整理位运算技巧的想法。从今天起我就开始写这一系列位运算讲解文章,与其说是原来那篇文章的follow-up,不如说是一个r
jsearch的索引文件结构
yangshangchuan
搜索引擎jsearch全文检索信息检索word分词
jsearch是一个高性能的全文检索工具包,基于倒排索引,基于java8,类似于lucene,但更轻量级。
jsearch的索引文件结构定义如下:
1、一个词的索引由=分割的三部分组成: 第一部分是词 第二部分是这个词在多少