朴素贝叶斯基本思想特点一般过程示例1基本思想朴素贝叶斯的基本思想就是选择高概率对应的类别,即如果有两类,若p1(x,y)>p2(x,y),则分类类别为1若p1(x,y)
机器学习实战学习笔记(十)使用Apriori算法进行关联分析
Hold_My_Own
机器学习Apriori机器学习
PS:该系列数据都可以在图灵社区(点击此链接)中随书下载中下载(如下) 从大规模数据集中寻找物品间的隐含关系被称作关联分析(associationanalysis)或者关联规则学习(associationrulelearning)。1关联分析Apriori算法优点:易编码实现。缺点:在大数据集上可能较慢。使用数据类型:数值型或者标称型数据。 关联分析是一种在大规模数据集中寻找有趣关系的任务。这
机器学习实战学习笔记(九)K-均值聚类算法
Hold_My_Own
机器学习K-Means聚类机器学习
PS:该系列数据都可以在图灵社区(点击此链接)中随书下载中下载(如下) 聚类是一种无监督的学习,它将相似的对象归到同一个簇中。它有点像全自动分类,聚类方法几乎可以应用于所有对象,簇内的对象越相似,聚类的效果越好。K-均值(K-means)聚类算法,之所以称之为K-均值是因为它可以发现k个不同的簇,且每个簇的中心采用簇中所含值的均值计算而成。 簇识别(clusteridentification)
Peter 机器学习实战学习笔记(1)
Liker79
机器学习学习矩阵
shape的简单理解一、shape可以获取数组或矩阵的大小信息(矩阵的行数,列数,数组每一维的元素个数)在矩阵中shape[0]可以获取行数,shape[1]可以获取列数二、numpy中的tilenp.tile()本着函数取名必有所依的原理,博主百度了一下tile的英文意思,发现tile有平铺的意思。1.沿X轴复制在numpy中,np.tile(a,(2))函数的作用就是将函数将函数沿着X轴扩大两
机器学习实战学习笔记(七)预测数值型数据:回归
Hold_My_Own
机器学习回归预测数值型数据机器学习
PS:该系列数据都可以在图灵社区(点击此链接)中随书下载中下载(如下)1用线性回归找到最佳拟合直线线性回归优点:结果易于理解,计算上不复杂。缺点:对非线性的数据拟合不好。适用数据类型:数值型和标称型数据。 假定输入数据存放在矩阵XXX中,而回归系数存放在向量www中。那么对于给定的数据X1X_1X1,预测结果将会通过Y1=X1TwY_1=X_1^TwY1=X1Tw给出。我们常用的方法极速找出使误
机器学习实战学习笔记11——FP-growth 算法
飞鸟2010
python学习笔记python机器学习FP-growth
1.FP-growth算法概述1.1FP-growth算法介绍FP-Growth算法是韩家炜等人在2000年提出的关联分析算法,它采取分治策略:将提供频繁项集的数据库压缩到一棵频繁模式树(FP-tree),但仍保留项集关联信息。1.2FP-growth算法原理FP-growth算法使用了一种称为频繁模式树(FrequentPatternTree)的数据结构。FP-tree是一种特殊的前缀树,由频繁
机器学习实战学习笔记(五)支持向量机
Hold_My_Own
机器学习
PS:该系列数据都可以在图灵社区(点击此链接)中随书下载中下载(如下)1基于最大间隔分隔数据支持向量机(SupportVectorMachines,SVM)优点:泛化错误率低,计算开销不大,结果易于解释。缺点:对参数调节和核函数的选择敏感,原始分类器不加修改仅适用于处理二类问题。使用数据类型:数值型和标称型数据。 假设给定一个特征空间上的训练数据集T={(x1,y1),(x2,y2),...,(
机器学习实战学习笔记4——奇异值分解(SVD)
飞鸟2010
python学习笔记机器学习
1.SVD算法概述1.1SVD算法介绍奇异值分解(SingularValueDecomposition)算法,可以将数据映射到低维空间,常用于从有噪声数据中抽取相关特征。1.2SVD算法原理(1)先利用SVD从数据中构建一个主题空间;(2)然后在该空间下计算相似度;1.3SVD算法优缺点(1)优点:简化数据,去除噪声,提高算法的结果(2)缺点:数据的转换可能难以理解(3)应用:最优化问题、特征值问
【机器学习实战学习笔记(1-2)】k-近邻算法应用实例python代码
进击的AI小白
机器学习
文章目录1.改进约会网站匹配效果1.1准备数据:从文本文件中解析数据1.2分析数据:使用Matplotlib创建散点图1.3准备数据:归一化特征1.4测试算法:作为完整程序验证分类器1.5使用算法:构建完成可用系统2.手写识别系统2.1准备数据:将图像转换为测试向量2.2测试算法:使用k-近邻算法识别手写数字在上一篇文章中我们得到了基于欧式距离、多数表决规则,实现方法采用线性搜索法的k-近邻法cl
机器学习实战学习笔记(十三)利用SVD简化数据
Hold_My_Own
机器学习svd机器学习
PS:该系列数据都可以在图灵社区(点击此链接)中随书下载中下载(如下)1SVD的应用奇异值分解优点:简化数据,去除噪声,提高算法的结果。缺点:数据的转换可能难以理解。适用数据类型:数值型数据。1.1隐形语义索引 最早的SVD应用之一就是信息检索。我们称利用SVD的方法为隐性语义索引(LatentSemanticIndex,LSI)或隐性语义分析(LatentSemanticAnalysis,LS
机器学习实战学习笔记(十二)利用PCA来简化数据
Hold_My_Own
机器学习
PS:该系列数据都可以在图灵社区(点击此链接)中随书下载中下载(如下)1降维技术 对数据进行简化的原因:使得数据集更易使用;降低很多算法的计算开销;去除噪声;使得结果易懂。 主成分分析(PrincipalComponentAnalysis,PCA):在PCA中,数据从原来的坐标系转换到了新的坐标系,新坐标系的选择是由数据本身决定的。第一个新坐标轴选择的是原始数据中方差最大的方向,第二个新坐标轴
机器学习实战学习笔记(十一)使用FP-growth算法来高效发现频繁项集
Hold_My_Own
机器学习
PS:该系列数据都可以在图灵社区(点击此链接)中随书下载中下载(如下) FP-growth算法:比Apriori算法要快。它基于Apriori构建,但是在完成相同任务时采用了一些不同的技术。这里的任务是将数据集存储在一个特定的称作FP树的结构之后发现频繁项集或者频繁相对,即常在一块出现的元素项的集合FP树。这个算法能够更有效地挖掘数据。这种算法虽然能更为高效地发现频繁项集,但不能用于发现关联规则
机器学习实战学习笔记(一)
sakurakdx
1.KNN算法描述简单来说:k-近邻算法(knn)采用测量不同特征值之间的距离算法进行分类优点:精度高、对异常值不敏感、无数据输入假定缺点:计算复杂度高、空间复杂度高适用数据范围:数值型和标称型工作原理:存在一个训练样本集,样本集中每个数据都存在标签。输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似(最近邻)的分类标签。一般来说,只选择样本
机器学习实战学习笔记 ---- K-Means(K-均值)聚类算法
杨鑫newlfe
MachineLearning
聚类是一种无监督的学习,它将相似的对象归到一个簇中,将不相似的对象归到不同的簇中。相似这一概念取决于所选择的相似度计算方式。K-Means是发现给定数据集的K个簇的聚类算法,之所以称之为“K-均”值是因为它可以发现K个不同的簇,且每个簇的中心采用的所含值的均值计算而成。簇个数K是用户指定的,每一个簇通过其质心(centroid),即簇中所有点的中心来描述。聚类与分类算法的最大区别在于,分类的目标类
【机器学习实战学习笔记(2-2)】决策树python3.6实现及简单应用
siplifyit
文章目录1.ID3及C4.5算法基础1.1计算香农熵1.2按照给定特征划分数据集1.3选择最优特征1.4多数表决实现2.基于ID3、C4.5生成算法创建决策树3.使用决策树进行分类4.存储决策树通过决策树原理及相关概念细节我们知道,决策树的学习算法主要包括3个步骤:特征选择、决策树生成算法、决策树剪枝,我们按照这个思路来一一实现相关功能。本文的实现目前主要涉及特征选择、ID3及C4.5算法。剪枝及
【机器学习实战学习笔记(2-1)】决策树原理及相关概念细节
siplifyit
文章目录1.决策树概述1.1基本概念1.2决策树学习概述2.特征选择2.1信息增益(informationgain)2.1.1熵(entropy)2.1.2条件熵(conditionalentropy)2.1.3信息增益计算2.2信息增益比(informationgainration)3.决策树的生成3.1ID3算法3.2C4.5算法4.决策树的剪枝1.决策树概述决策树(decisiontree)
机器学习实战学习笔记
suuunnnyoy
学习笔记
目录统计学习基本概念统计学习三要素1模型2策略(评价准则)损失函数和风险函数经验风险最小化和结构风险最小化一、分类1.K近邻1.1算法概述1.2算法一般流程:1.3算法要素1.3.1距离度量1.3.2k值的选择1.3.3分类决策规则1.4k近邻法的实现:kd树1.4.1构造kd树1.4.2搜索kd树1.5额外的2.决策树2.1算法概述2.2算法流程2.3特征选择2.3.1信息增益2.3.2信息增益
机器学习实战学习笔记一
SilenceHell
机器学习实战学习笔记
一.误差讲的很不错,我最初学机器学习就是看吴恩达的课程,当初他就讲了平方项误差是由高斯分布通过极大似然求得的,当时还不是特别理解,之后很多的教材也没有对这方面进行解释,没想到这里给推导了一遍,很不错。这张幻灯片有一个问题,XθX\thetaXθ都是列变量是不能相乘的,这里应该有一个转置。注意:能用这个方式直接求出结果的条件很苛刻那就是XTXX^TXXTX必须是非奇异矩阵,大部分实际条件下,这个条件
机器学习实战学习笔记(二)
三年二班周杰伦
机器学习
决策树。后面的CART会涉及到剪枝和回归。那个才是重点。这里就简单贴一下代码。frommathimportlog
importoperator
defcreateDataset():
dataSet=[[1,1,'yes'],[1,1,'yes'],[1,0,'no'],[0,1,'no'],[0,1,'no']]
labels=['nosurfacing','flippers']
return
机器学习实战学习笔记(一)
三年二班周杰伦
机器学习
shape的用法numpy.tile()函数numpy.sum()的用法KNN算法和kmeans算法的异同numpy.argsort()字典的get方法python中iteritems()函数一开始看问题还是蛮多的,看python的基础语法看完就忘了,只有到真正需要用的时候才会了解到相应的用法。下面是带注释的代码。fromnumpyimport*
importoperator
fromosimpo
机器学习实战学习笔记
infinitezechan
机器学习实战
Chapter1机器学习基础NumPy函数库基础random.rand(4,4)上述命令构造了4*4的随机数组>>>random.rand(4,4)
array([[0.0418002,0.20941796,0.68781548,0.32148814],[0.39318817,0.46766914,0.49318351,0.65444726],[0.33036255,0.70759215,0.59
机器学习实战学习笔记(三):朴素贝叶斯
test103
机器学习
贝叶斯原理之所以称之为“朴素”,是因为整个形式化过程只做最原始、最简单的假设。优缺点-优点:在数据较少的情况下仍然有效,可以处理多类别问题。-确定:对于输入数据的准备方式比较敏感。-适用数据类型:标称型数据。入门示例二维坐标中,如果p1(x,y)>p2(x,y),那么(x,y)属于类别1,否则属于类别2.共有7块石头,3块灰色的,4块黑色的p(gray)=3/7p(black)=4/7现在将7块石
机器学习实战学习笔记(四):Logistic回归
test103
机器学习
逻辑回归逻辑回归分类的主要思想是:根据现有数据对分类边界线建立回归公式,以此进行分类。优缺点优点:计算代价不高,易于理解和实现。确定:容易欠拟合,分类精度可能不高。适用数据类型:数值型和标称型数据。核心概念sigma函数最大释然估计应用——从疝气病预测病马的死亡率这章不详细描述,请参考书中描述及这篇博客,写的很好(http://sbp810050504.blog.51cto.com/2799422
机器学习实战学习笔记(二):决策树
test103
机器学习
决策树优缺点优点:计算复杂度不高,输出结果易于理解,对中间值的确实不敏感,可以处理不相关特征数据。缺点:可能会产生过度匹配问题。适用数据类型:数值型和标称型。原理树结构信息增益在划分数据集之前之后信息发生的变化称为信息增益。香农商集合信息的度量方式称为香农熵或者简称为熵,这个名字来源于信息论之父克劳德.香农。例子略实际中的应用——预测隐形眼镜类型隐形眼镜数据集是非常著名的数据集。构造树结构。
机器学习实战学习笔记9——Logistic回归
飞鸟2010
python学习笔记机器学习
1.logistic回归概述1.1logistic回归介绍Logistic回归是一种广义的线性回归分析模型,是研究二分类观察结果y与一些影响因素(x_1,x_2,…,x_n)之间关系的一种多变量分析方法。通常研究某些因素条件下某个结果是否发生,比如医学中根据症状来判断病人是否患有某种疾病。1.2Logistic回归原理Logistic回归进行分类的主要思想是:根据现有数据对分类边界线建立回归公式。
机器学习实战学习笔记8——朴素贝叶斯
飞鸟2010
python学习笔记机器学习
1.朴素贝叶斯概述1.1朴素贝叶斯介绍朴素贝叶斯(NaïveBayesian)是基于贝叶斯定理与特征条件独立假设的分类方法。朴素贝叶斯分类器基于一个简单的假设:给定目标值之间属性相互独立。1.2朴素贝叶斯工作原理假设有一个数据集,由两类组成,对于每个样本的分类,都是已知的。现在有一个新的点new_point(x,y),其分类未知。我们可以用p1(x,y)来表示数据点(x,y)属于类别1的概率;用p
机器学习实战学习笔记7——Kmeans
飞鸟2010
python学习笔记机器学习
1.Kmeans算法概述1.1Kmeans算法介绍Kmeans是发现给定数据集的K个簇的算法。簇个数K是用户给定的,每一个簇通过其质心,即簇中所有点的中心来描述。1.2Kmeans算法工作流程(1)创建K个质点作为起始质心;(2)当任意一个点的簇分配结果发生改变时:对数据集中的每个数据点对每个质心计算质心与数据点之间的距离将数据点分配到距其最近的簇对每一个簇,计算簇中所有点的均值并将均值作为质心1
机器学习实战学习笔记6——AdaBoost
飞鸟2010
python学习笔记机器学习
1.AdaBoost概述1.1AdaBoost介绍AdaBoost是一种迭代算法,其核心思想是针对同一训练集训练不同的分类器(弱分类器),然后把这些分类器集合起来,构成一个最终的强分类器。1.2AdaBoost优缺点(1)优点:泛化错误率低,易编码,可以应用在大部分分类器上,无需参数调整。(2)缺点:对离群点敏感。
机器学习实战学习笔记3——支持向量机
飞鸟2010
1.SVM算法概述1.1SVM简介支持向量机(SupportVectorMachine),是90年代中期发展起来的基于统计学习理论的一种机器学习方法,通过寻求结构化风险最小来提高学习机泛化能力,实现经验风险和置信范围的最小化,从而达到在统计样本量较少的情况下,亦能获得良好统计规律的目的。本身是一种监督式学习的方法,广泛应用于统计分类以及回归分析中。1.2SVM工作原理它使用非线性映射,将原训练数据
sql统计相同项个数并按名次显示
朱辉辉33
javaoracle
现在有如下这样一个表:
A表
ID Name time
------------------------------
0001 aaa 2006-11-18
0002 ccc 2006-11-18
0003 eee 2006-11-18
0004 aaa 2006-11-18
0005 eee 2006-11-18
0004 aaa 2006-11-18
0002 ccc 20
Android+Jquery Mobile学习系列-目录
白糖_
JQuery Mobile
最近在研究学习基于Android的移动应用开发,准备给家里人做一个应用程序用用。向公司手机移动团队咨询了下,觉得使用Android的WebView上手最快,因为WebView等于是一个内置浏览器,可以基于html页面开发,不用去学习Android自带的七七八八的控件。然后加上Jquery mobile的样式渲染和事件等,就能非常方便的做动态应用了。
从现在起,往后一段时间,我打算
如何给线程池命名
daysinsun
线程池
在系统运行后,在线程快照里总是看到线程池的名字为pool-xx,这样导致很不好定位,怎么给线程池一个有意义的名字呢。参照ThreadPoolExecutor类的ThreadFactory,自己实现ThreadFactory接口,重写newThread方法即可。参考代码如下:
public class Named
IE 中"HTML Parsing Error:Unable to modify the parent container element before the
周凡杨
html解析errorreadyState
错误: IE 中"HTML Parsing Error:Unable to modify the parent container element before the child element is closed"
现象: 同事之间几个IE 测试情况下,有的报这个错,有的不报。经查询资料后,可归纳以下原因。
java上传
g21121
java
我们在做web项目中通常会遇到上传文件的情况,用struts等框架的会直接用的自带的标签和组件,今天说的是利用servlet来完成上传。
我们这里利用到commons-fileupload组件,相关jar包可以取apache官网下载:http://commons.apache.org/
下面是servlet的代码:
//定义一个磁盘文件工厂
DiskFileItemFactory fact
SpringMVC配置学习
510888780
springmvc
spring MVC配置详解
现在主流的Web MVC框架除了Struts这个主力 外,其次就是Spring MVC了,因此这也是作为一名程序员需要掌握的主流框架,框架选择多了,应对多变的需求和业务时,可实行的方案自然就多了。不过要想灵活运用Spring MVC来应对大多数的Web开发,就必须要掌握它的配置及原理。
一、Spring MVC环境搭建:(Spring 2.5.6 + Hi
spring mvc-jfreeChart 柱图(1)
布衣凌宇
jfreechart
第一步:下载jfreeChart包,注意是jfreeChart文件lib目录下的,jcommon-1.0.23.jar和jfreechart-1.0.19.jar两个包即可;
第二步:配置web.xml;
web.xml代码如下
<servlet>
<servlet-name>jfreechart</servlet-nam
我的spring学习笔记13-容器扩展点之PropertyPlaceholderConfigurer
aijuans
Spring3
PropertyPlaceholderConfigurer是个bean工厂后置处理器的实现,也就是BeanFactoryPostProcessor接口的一个实现。关于BeanFactoryPostProcessor和BeanPostProcessor类似。我会在其他地方介绍。PropertyPlaceholderConfigurer可以将上下文(配置文件)中的属性值放在另一个单独的标准java P
java 线程池使用 Runnable&Callable&Future
antlove
javathreadRunnablecallablefuture
1. 创建线程池
ExecutorService executorService = Executors.newCachedThreadPool();
2. 执行一次线程,调用Runnable接口实现
Future<?> future = executorService.submit(new DefaultRunnable());
System.out.prin
XML语法元素结构的总结
百合不是茶
xml树结构
1.XML介绍1969年 gml (主要目的是要在不同的机器进行通信的数据规范)1985年 sgml standard generralized markup language1993年 html(www网)1998年 xml extensible markup language
改变eclipse编码格式
bijian1013
eclipse编码格式
1.改变整个工作空间的编码格式
改变整个工作空间的编码格式,这样以后新建的文件也是新设置的编码格式。
Eclipse->window->preferences->General->workspace-
javascript中return的设计缺陷
bijian1013
JavaScriptAngularJS
代码1:
<script>
var gisService = (function(window)
{
return
{
name:function ()
{
alert(1);
}
};
})(this);
gisService.name();
&l
【持久化框架MyBatis3八】Spring集成MyBatis3
bit1129
Mybatis3
pom.xml配置
Maven的pom中主要包括:
MyBatis
MyBatis-Spring
Spring
MySQL-Connector-Java
Druid
applicationContext.xml配置
<?xml version="1.0" encoding="UTF-8"?>
&
java web项目启动时自动加载自定义properties文件
bitray
javaWeb监听器相对路径
创建一个类
public class ContextInitListener implements ServletContextListener
使得该类成为一个监听器。用于监听整个容器生命周期的,主要是初始化和销毁的。
类创建后要在web.xml配置文件中增加一个简单的监听器配置,即刚才我们定义的类。
<listener>
<des
用nginx区分文件大小做出不同响应
ronin47
昨晚和前21v的同事聊天,说到我离职后一些技术上的更新。其中有个给某大客户(游戏下载类)的特殊需求设计,因为文件大小差距很大——估计是大版本和补丁的区别——又走的是同一个域名,而squid在响应比较大的文件时,尤其是初次下载的时候,性能比较差,所以拆成两组服务器,squid服务于较小的文件,通过pull方式从peer层获取,nginx服务于较大的文件,通过push方式由peer层分发同步。外部发布
java-67-扑克牌的顺子.从扑克牌中随机抽5张牌,判断是不是一个顺子,即这5张牌是不是连续的.2-10为数字本身,A为1,J为11,Q为12,K为13,而大
bylijinnan
java
package com.ljn.base;
import java.util.Arrays;
import java.util.Random;
public class ContinuousPoker {
/**
* Q67 扑克牌的顺子 从扑克牌中随机抽5张牌,判断是不是一个顺子,即这5张牌是不是连续的。
* 2-10为数字本身,A为1,J为1
翟鸿燊老师语录
ccii
翟鸿燊
一、国学应用智慧TAT之亮剑精神A
1. 角色就是人格
就像你一回家的时候,你一进屋里面,你已经是儿子,是姑娘啦,给老爸老妈倒怀水吧,你还觉得你是老总呢?还拿派呢?就像今天一样,你们往这儿一坐,你们之间是什么,同学,是朋友。
还有下属最忌讳的就是领导向他询问情况的时候,什么我不知道,我不清楚,该你知道的你凭什么不知道
[光速与宇宙]进行光速飞行的一些问题
comsci
问题
在人类整体进入宇宙时代,即将开展深空宇宙探索之前,我有几个猜想想告诉大家
仅仅是猜想。。。未经官方证实
1:要在宇宙中进行光速飞行,必须首先获得宇宙中的航行通行证,而这个航行通行证并不是我们平常认为的那种带钢印的证书,是什么呢? 下面我来告诉
oracle undo解析
cwqcwqmax9
oracle
oracle undo解析2012-09-24 09:02:01 我来说两句 作者:虫师收藏 我要投稿
Undo是干嘛用的? &nb
java中各种集合的详细介绍
dashuaifu
java集合
一,java中各种集合的关系图 Collection 接口的接口 对象的集合 ├ List 子接口 &n
卸载windows服务的方法
dcj3sjt126com
windowsservice
卸载Windows服务的方法
在Windows中,有一类程序称为服务,在操作系统内核加载完成后就开始加载。这里程序往往运行在操作系统的底层,因此资源占用比较大、执行效率比较高,比较有代表性的就是杀毒软件。但是一旦因为特殊原因不能正确卸载这些程序了,其加载在Windows内的服务就不容易删除了。即便是删除注册表中的相 应项目,虽然不启动了,但是系统中仍然存在此项服务,只是没有加载而已。如果安装其他
Warning: The Copy Bundle Resources build phase contains this target's Info.plist
dcj3sjt126com
iosxcode
http://developer.apple.com/iphone/library/qa/qa2009/qa1649.html
Excerpt:
You are getting this warning because you probably added your Info.plist file to your Copy Bundle
2014之C++学习笔记(一)
Etwo
C++EtwoEtwoiterator迭代器
已经有很长一段时间没有写博客了,可能大家已经淡忘了Etwo这个人的存在,这一年多以来,本人从事了AS的相关开发工作,但最近一段时间,AS在天朝的没落,相信有很多码农也都清楚,现在的页游基本上达到饱和,手机上的游戏基本被unity3D与cocos占据,AS基本没有容身之处。so。。。最近我并不打算直接转型
js跨越获取数据问题记录
haifengwuch
jsonpjsonAjax
js的跨越问题,普通的ajax无法获取服务器返回的值。
第一种解决方案,通过getson,后台配合方式,实现。
Java后台代码:
protected void doPost(HttpServletRequest req, HttpServletResponse resp)
throws ServletException, IOException {
String ca
蓝色jQuery导航条
ini
JavaScripthtmljqueryWebhtml5
效果体验:http://keleyi.com/keleyi/phtml/jqtexiao/39.htmHTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>jQuery鼠标悬停上下滑动导航条 - 柯乐义<
linux部署jdk,tomcat,mysql
kerryg
jdktomcatlinuxmysql
1、安装java环境jdk:
一般系统都会默认自带的JDK,但是不太好用,都会卸载了,然后重新安装。
1.1)、卸载:
(rpm -qa :查询已经安装哪些软件包;
rmp -q 软件包:查询指定包是否已
DOMContentLoaded VS onload VS onreadystatechange
mutongwu
jqueryjs
1. DOMContentLoaded 在页面html、script、style加载完毕即可触发,无需等待所有资源(image/iframe)加载完毕。(IE9+)
2. onload是最早支持的事件,要求所有资源加载完毕触发。
3. onreadystatechange 开始在IE引入,后来其它浏览器也有一定的实现。涉及以下 document , applet, embed, fra
sql批量插入数据
qifeifei
批量插入
hi,
自己在做工程的时候,遇到批量插入数据的数据修复场景。我的思路是在插入前准备一个临时表,临时表的整理就看当时的选择条件了,临时表就是要插入的数据集,最后再批量插入到数据库中。
WITH tempT AS (
SELECT
item_id AS combo_id,
item_id,
now() AS create_date
FROM
a
log4j打印日志文件 如何实现相对路径到 项目工程下
thinkfreer
Weblog4j应用服务器日志
最近为了实现统计一个网站的访问量,记录用户的登录信息,以方便站长实时了解自己网站的访问情况,选择了Apache 的log4j,但是在选择相对路径那块 卡主了,X度了好多方法(其实大多都是一样的内用,还一个字都不差的),都没有能解决问题,无奈搞了2天终于解决了,与大家分享一下
需求:
用户登录该网站时,把用户的登录名,ip,时间。统计到一个txt文档里,以方便其他系统调用此txt。项目名
linux下mysql-5.6.23.tar.gz安装与配置
笑我痴狂
mysqllinuxunix
1.卸载系统默认的mysql
[root@localhost ~]# rpm -qa | grep mysql
mysql-libs-5.1.66-2.el6_3.x86_64
mysql-devel-5.1.66-2.el6_3.x86_64
mysql-5.1.66-2.el6_3.x86_64
[root@localhost ~]# rpm -e mysql-libs-5.1