聊聊flink的window操作

本文主要研究一下flink的window操作

window

DataStream

flink-streaming-java_2.11-1.7.0-sources.jar!/org/apache/flink/streaming/api/datastream/DataStream.java

    public AllWindowedStream timeWindowAll(Time size) {
        if (environment.getStreamTimeCharacteristic() == TimeCharacteristic.ProcessingTime) {
            return windowAll(TumblingProcessingTimeWindows.of(size));
        } else {
            return windowAll(TumblingEventTimeWindows.of(size));
        }
    }

    public AllWindowedStream timeWindowAll(Time size, Time slide) {
        if (environment.getStreamTimeCharacteristic() == TimeCharacteristic.ProcessingTime) {
            return windowAll(SlidingProcessingTimeWindows.of(size, slide));
        } else {
            return windowAll(SlidingEventTimeWindows.of(size, slide));
        }
    }

    public AllWindowedStream countWindowAll(long size) {
        return windowAll(GlobalWindows.create()).trigger(PurgingTrigger.of(CountTrigger.of(size)));
    }

    public AllWindowedStream countWindowAll(long size, long slide) {
        return windowAll(GlobalWindows.create())
                .evictor(CountEvictor.of(size))
                .trigger(CountTrigger.of(slide));
    }

    @PublicEvolving
    public  AllWindowedStream windowAll(WindowAssigner assigner) {
        return new AllWindowedStream<>(this, assigner);
    }
  • 对于非KeyedStream,有timeWindowAll、countWindowAll、windowAll操作,其中最主要的是windowAll操作,它的parallelism为1,它需要一个WindowAssigner参数,返回的是AllWindowedStream

KeyedStream

flink-streaming-java_2.11-1.7.0-sources.jar!/org/apache/flink/streaming/api/datastream/KeyedStream.java

    public WindowedStream timeWindow(Time size) {
        if (environment.getStreamTimeCharacteristic() == TimeCharacteristic.ProcessingTime) {
            return window(TumblingProcessingTimeWindows.of(size));
        } else {
            return window(TumblingEventTimeWindows.of(size));
        }
    }

    public WindowedStream timeWindow(Time size, Time slide) {
        if (environment.getStreamTimeCharacteristic() == TimeCharacteristic.ProcessingTime) {
            return window(SlidingProcessingTimeWindows.of(size, slide));
        } else {
            return window(SlidingEventTimeWindows.of(size, slide));
        }
    }

    public WindowedStream countWindow(long size) {
        return window(GlobalWindows.create()).trigger(PurgingTrigger.of(CountTrigger.of(size)));
    }

    public WindowedStream countWindow(long size, long slide) {
        return window(GlobalWindows.create())
                .evictor(CountEvictor.of(size))
                .trigger(CountTrigger.of(slide));
    }

    @PublicEvolving
    public  WindowedStream window(WindowAssigner assigner) {
        return new WindowedStream<>(this, assigner);
    }
  • 对于KeyedStream除了继承了DataStream的window相关操作,它主要用的是timeWindow、countWindow、window操作,其中最主要的是window操作,它也需要一个WindowAssigner参数,返回的是WindowedStream

WindowedStream

flink-streaming-java_2.11-1.7.0-sources.jar!/org/apache/flink/streaming/api/datastream/WindowedStream.java

@Public
public class WindowedStream {

    /** The keyed data stream that is windowed by this stream. */
    private final KeyedStream input;

    /** The window assigner. */
    private final WindowAssigner windowAssigner;

    /** The trigger that is used for window evaluation/emission. */
    private Trigger trigger;

    /** The evictor that is used for evicting elements before window evaluation. */
    private Evictor evictor;

    /** The user-specified allowed lateness. */
    private long allowedLateness = 0L;

    /**
     * Side output {@code OutputTag} for late data. If no tag is set late data will simply be
     * dropped.
      */
    private OutputTag lateDataOutputTag;

    @PublicEvolving
    public WindowedStream(KeyedStream input,
            WindowAssigner windowAssigner) {
        this.input = input;
        this.windowAssigner = windowAssigner;
        this.trigger = windowAssigner.getDefaultTrigger(input.getExecutionEnvironment());
    }

    @PublicEvolving
    public WindowedStream trigger(Trigger trigger) {
        if (windowAssigner instanceof MergingWindowAssigner && !trigger.canMerge()) {
            throw new UnsupportedOperationException("A merging window assigner cannot be used with a trigger that does not support merging.");
        }

        if (windowAssigner instanceof BaseAlignedWindowAssigner) {
            throw new UnsupportedOperationException("Cannot use a " + windowAssigner.getClass().getSimpleName() + " with a custom trigger.");
        }

        this.trigger = trigger;
        return this;
    }

    @PublicEvolving
    public WindowedStream allowedLateness(Time lateness) {
        final long millis = lateness.toMilliseconds();
        checkArgument(millis >= 0, "The allowed lateness cannot be negative.");

        this.allowedLateness = millis;
        return this;
    }

    @PublicEvolving
    public WindowedStream sideOutputLateData(OutputTag outputTag) {
        Preconditions.checkNotNull(outputTag, "Side output tag must not be null.");
        this.lateDataOutputTag = input.getExecutionEnvironment().clean(outputTag);
        return this;
    }

    @PublicEvolving
    public WindowedStream evictor(Evictor evictor) {
        if (windowAssigner instanceof BaseAlignedWindowAssigner) {
            throw new UnsupportedOperationException("Cannot use a " + windowAssigner.getClass().getSimpleName() + " with an Evictor.");
        }
        this.evictor = evictor;
        return this;
    }

    // ------------------------------------------------------------------------
    //  Operations on the keyed windows
    // ------------------------------------------------------------------------

    //......
}
  • WindowedStream有几个参数,其中构造器要求的是input及windowAssigner参数,然后还有Trigger、Evictor、allowedLateness、OutputTag这几个可选参数;另外还必须设置operation function,主要有ReduceFunction、AggregateFunction、FoldFunction(废弃)、ProcessWindowFunction这几个
  • windowAssigner主要用来决定元素如何划分到window中,这里主要有TumblingEventTimeWindows/TumblingProcessingTimeWindows、SlidingEventTimeWindows/SlidingProcessingTimeWindows、EventTimeSessionWindows/ProcessingTimeSessionWindows、GlobalWindows这几个
  • Trigger用来触发window的发射,Evictor用来在发射window的时候剔除元素,allowedLateness用于指定允许元素落后于watermark的最大时间,超出则被丢弃(仅仅对于event-time window有效),OutputTag用于将late数据输出到side output,可以通过SingleOutputStreamOperator.getSideOutput(OutputTag)方法来获取
AllWindowedStream的属性/操作基本跟WindowedStream类似,这里就不详细展开

小结

  • window操作是处理无限数据流的核心,它将数据流分割为有限大小的buckets,然后就可以在这些有限数据上进行相关的操作。flink的window操作主要分为两大类,一类是针对KeyedStream的window操作,一个是针对non-key stream的windowAll操作
  • window操作主要有几个参数,WindowAssigner是必不可少的参数,主要有TumblingEventTimeWindows/TumblingProcessingTimeWindows、SlidingEventTimeWindows/SlidingProcessingTimeWindows、EventTimeSessionWindows/ProcessingTimeSessionWindows、GlobalWindows这几个;另外还必须设置operation function,主要有ReduceFunction、AggregateFunction、FoldFunction(废弃)、ProcessWindowFunction这几个
  • Trigger、Evictor、allowedLateness、OutputTag这几个为可选参数,Trigger用来触发window的发射,Evictor用来在发射window的时候剔除元素,allowedLateness用于指定允许元素落后于watermark的最大时间,超出则被丢弃(仅仅对于event-time window有效),OutputTag用于将late数据输出到side output,可以通过SingleOutputStreamOperator.getSideOutput(OutputTag)方法来获取

doc

  • Windows

你可能感兴趣的:(flink)