- 鲲鹏920 7265 (128C)@3.0GHz处理器全解析
facaixxx2024
云服务器服务器CPU
鲲鹏9207265(128C)@3.0GHz:鲲鹏9207265处理器,通常是单芯片64核,当使用2路处理器时可达128核,主频3.0GHz,服务器百科网fwqbk.com分享鲲鹏920处理器:鲲鹏920处理器基本参数架构:ARMv8.2制造工艺:7nm内存:支持8通道DDR4内存,内存速率可达2933MT/s缓存:L1为64KB指令缓存和数据缓存;L2为512KB每核独立缓存;L3为24-64M
- DeepSeek-R1模型1.5b、7b、8b、14b、32b、70b和671b有啥区别?
facaixxx2024
AI大模型人工智能算法深度学习
deepseek-r1的1.5b、7b、8b、14b、32b、70b和671b有啥区别?码笔记mabiji.com分享:1.5B、7B、8B、14B、32B、70B是蒸馏后的小模型,671B是基础大模型,它们的区别主要体现在参数规模、模型容量、性能表现、准确性、训练成本、推理成本和不同使用场景:deepseek-r1的1.5b、7b、8b、14b、32b、70b和671b参数规模参数规模的区别,模
- python 使用microsoft-Florence-2-base进行图片描述生成
哦里 哦里哦里给
AI大语言模型实战pythonmicrosoft开发语言
目录一、Florence-2简介二、代码实践三、多语言模型一、Florence-2简介Florence-2是一个先进的视觉基础模型,采用基于提示(prompt)的方式,处理广泛的视觉和视觉-语言任务。Florence-2能够解析简单的文本提示,执行如图像描述、物体检测和分割等任务。该模型利用FLD-5B数据集,该数据集包含54亿个注释,涵盖1.26亿张图像,用于掌握多任务学习。模型的序列到序列架构
- 从0到1构建AI深度学习视频分析系统--基于YOLO 目标检测的动作序列检查系统:(2)消息队列与消息中间件
shiter
人工智能系统解决方案与技术架构人工智能深度学习音视频
文章大纲原始视频队列Python内存视频缓存优化方案(4GB以内)一、核心参数设计二、内存管理实现三、性能优化策略四、内存占用验证五、高级优化技巧六、部署建议检测结果队列YOLO检测结果队列技术方案一、技术选型矩阵二、核心实现代码三、性能优化策略四、可视化方案对比五、部署建议逻辑判定队列时间片图论时间序列大模型引入参考文献原始视频队列想要在单机内存中缓存1-5分钟的视频片段,python技术栈的话
- 10万人服务器配置如何选择?10w并发量配置架构
facaixxx2024
阿里云服务器架构运维
10万并发量的应用如何选择阿里云服务器配置?首先要选择云服务器ECS实例规格,因为是10万并发量需要配置负载均衡,而且还要使用缓存技术,阿里云服务器网aliyunfuwuqi.com从阿里云官网整理的关于阿里云10万并发量服务器配置和案例分享:10万人服务器云服务器ECS实例规格选择要满足10w并发量的阿里云服务器,首先需要选择适合的云服务器ECS实例规格。阿里云提供了多种不同的实例类型,包括通用
- 【人工智能】Model Context Protocol (MCP) 是一个开放协议,标准化了应用程序向大型语言模型(LLMs)提供上下文的方式
本本本添哥
013-AIGC人工智能大模型人工智能语言模型php
一、ModelContextProtocol(MCP)概述MCP,ModelContextProtocolMCP,是一个开放协议。MCP,标准化了应用程序向大型语言模型(LLMs)提供上下文的方式。MCP,旨在标准化应用程序如何为大型语言模型(LLM)提供上下文信息。MCP,提供了一个标准的接口,使得LLM可以无缝集成各种外部数据源和工具,从而扩展其能力和应用场景。二、MCP的定义和作用MCP定
- 从零开始大模型开发与微调:PyCharm的下载与安装
AI天才研究院
AI大模型企业级应用开发实战AI大模型应用入门实战与进阶DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
从零开始大模型开发与微调:PyCharm的下载与安装1.背景介绍随着人工智能和深度学习技术的不断发展,大型语言模型(LargeLanguageModels,LLMs)已经成为当前最引人注目的研究热点之一。LLMs能够在各种自然语言处理任务上展现出惊人的性能,例如机器翻译、文本生成、问答系统等。PyTorch和TensorFlow等深度学习框架为训练和微调大型语言模型提供了强大的支持。PyCharm
- 系分 02 软件工程
一越王超
软考系统分析师软件工程
软件工程本身涵盖内容很广,从系统规划到分析……到维护都属于软件工程,但是我们将会在其他章节讨论相关内容,本节我们主要内容如下:系统规划软件工程信息系统生命周期(★)软件开发模型(★★★★)逆向工程(★★)净室软件工程(★)需求工程系统设计系统测试与维护基础知识软件工程是指应用计算机科学、数学及管理科学等原理,以工程化的原则和方法来解决软件问题的工程,其目的是提高软件生产率、提高软件质量、减低软件成
- Python第二十三课:自监督学习 | 无标注数据的觉醒
程之编
Python全栈通关秘籍python开发语言人工智能机器学习
本节目标理解自监督学习的核心范式与优势掌握对比学习(ContrastiveLearning)框架实现图像掩码自编码器(MaskedAutoencoder)开发实战项目:亿级参数模型轻量化探索数据增强的创造性艺术一、自监督学习基础(AI的拼图游戏)1.核心思想解析学习范式数据需求生活比喻监督学习海量标注数据老师逐题批改作业无监督学习纯无标签数据自学杂乱笔记自监督学习自动生成伪标签玩拼图游戏(根据碎片
- 【从零开始学习计算机科学】软件工程(一)软件工程中的过程模型
贫苦游商
学习软件工程过程模型瀑布模型敏捷开发极限编程V模型
【从零开始学习计算机科学】软件工程(一)软件工程中的过程模型软件与软件工程软件工程具有以下核心要素软件工程中的过程模型惯用过程模型瀑布模型V模型增量过程模型演化过程模型原型模型螺旋模型协同开发模型喷泉模型专用过程模型构件组装模型统一过程模型(RUP)统一过程模型的起源与发展面向对象UMLRUP有9个工作流:敏捷模型敏捷开发的立场极限编程工业级极限编程(IXP)ScrumScrum中有三种角色:Sc
- 【从零开始学习计算机科学】设计模式(二)工厂模式、抽象工厂模式、单例模式、建造者模型、原型模式
贫苦游商
学习设计模式抽象工厂模式工厂模式单例模式原型模式建造者模式
【从零开始学习计算机科学】设计模式(二)工厂模式、抽象工厂模式、单例模式、建造者模型、原型模式工厂模式主要特点类型适用场景抽象工厂模式主要特点工作原理适用场景举例优点缺点总结单例模式主要特点工作原理适用场景优点缺点总结建造者模式主要特点工作原理适用场景优点缺点总结原型模式主要特点工作原理适用场景优点缺点总结工厂模式工厂模式(FactoryPattern)是一种常用的创建型设计模式,目的是通过工厂方
- 数据增强正在杀死你的模型:90%开发者不知道的回译质量陷阱
人工智能
1回译增强的核心机理1.1跨语言语义重构原理目前文本数据增强方面效果较好的增强方法。回译数据增强(Back-translationAugmentation)是基于神经机器翻译的文本再生技术,其核心运作流程包含三个关键阶段:语义编码阶段:源语言文本通过NMT模型编码为中间语义表示跨语言迁移阶段:语义表示解码为目标语言文本(建议选择阿尔巴尼亚语、斯瓦希里语等低资源语种)语义重构阶段:目标语言文本二次编
- 大模型系列——正式推出 Spring AI MCP:用于 MCP(模型上下文协议)的 Java SDK
不二人生
大模型人工智能大模型
大模型系列——正式推出SpringAIMCP:用于MCP(模型上下文协议)的JavaSDK我们很高兴推出SpringAIMCP,它是模型上下文协议(ModelContextProtocol,MCP)的强大JavaSDK实现。SpringAI生态系统的这一新成员为Java平台带来了标准化的AI模型集成能力。MCP是什么?模型上下文协议(MCP)是一种开放式协议,它规范了应用程序为大型语言模型(LLM
- 新手村:数据预处理-特征缩放
嘉羽很烦
机器学习线性回归算法机器学习
新手村:数据预处理-特征缩放特征缩放(FeatureScaling)是数据预处理中的一个重要步骤,特别是在应用某些机器学习算法时。特征缩放可以使不同尺度的特征具有相同的量级,从而提高模型训练的效率和性能。常见的特征缩放方法包括标准化(Standardization)和归一化(Normalization)。常见的特征缩放方法标准化(Standardization)将特征转换为均值为0,标准差为1的标
- MCP(Model Context Protocol)模型上下文协议 理论篇1 - 架构
AIQL
MCP(ModelContextProtocol)架构ai人工智能MCP
核心架构理解MCP如何连接客户端、服务器和LLM模型上下文协议(MCP)建立在灵活、可扩展的架构之上,能够实现LLM应用程序和集成之间的无缝通信。本文档涵盖了核心架构组件和概念。概述MCP采用客户端-服务器架构,其中:主机(Hosts)是发起连接的LLM应用程序(例如DesktopApp或IDE)。客户端(Clients)在主机应用程序内部与服务器保持1对1的连接。服务器(Servers)为客户端
- python 装饰器
每天减 1/5kg
python
装饰器装饰器本质上是一个返回函数的高阶函数,可以接收函数作为参数,并返回一个新的函数。它允许你在不修改原函数代码的情况下,动态地给函数或方法添加额外的功能在我们的日常使用中,装饰器一般用于:日志记录、权限认证、性能分析、缓存等场景。简单示例defmy_decorator(func):defwrapper(*args,**kwargs):print("Beforecallingthefunction
- 支持向量机 (SVM) 算法详解
sssugarr
机器学习算法详解pythonsvm支持向量机算法sklearn
支持向量机(SVM)算法详解支持向量机(SupportVectorMachine,SVM)是一种监督学习模型,广泛应用于分类和回归分析。SVM特别适合高维数据,并且在处理复杂非线性数据时表现出色。本文将详细讲解SVM的原理、数学公式、应用场景及其在Python中的实现。什么是支持向量机?支持向量机的目标是找到一个最佳的决策边界(或称超平面)来最大限度地分隔不同类别的数据点。对于线性可分的数据,SV
- MobileNet家族:从v1到v4的架构演进与发展历程
彩旗工作室
人工智能架构人工智能机器学习cnn卷积神经网络
MobileNet是一个专为移动设备和嵌入式系统设计的轻量化卷积神经网络(CNN)家族,旨在在资源受限的环境中实现高效的图像分类、对象检测和语义分割等任务。自2017年首次推出以来,MobileNet经历了从v1到v4的多次迭代,每一代都在计算效率、模型大小和准确性上取得了显著进步。本文将详细探讨MobileNetv1、v2、v3和v4的原理、架构设计及其发展历程,并分析其关键创新和性能表现。Mo
- MindSpore:华为全场景AI框架的技术全景与生态实践
彩旗工作室
人工智能人工智能
一、框架概述MindSpore(昇思)是华为自主研发的全场景AI计算框架,于2020年3月开源,旨在实现易开发、高效执行、灵活部署三大核心目标。作为华为昇腾AI生态的基石,MindSpore支持端、边、云全场景覆盖,并深度融合昇腾处理器的算力特性,提供从模型开发、训练到推理部署的端到端能力。截至2025年,其月度开发者访问量已突破12万,成为国内开源社区最活跃的AI框架之一。二、架构设计MindS
- 过拟合:机器学习中的“死记硬背”陷阱
彩旗工作室
人工智能机器学习人工智能
在机器学习中,过拟合(Overfitting)是一个几乎每个从业者都会遇到的经典问题。它像一把双刃剑:当模型过于“聪明”时,可能会陷入对训练数据的过度依赖,从而失去处理新问题的能力。本文将从原理到实践,深入探讨过拟合的本质及应对策略。1.什么是过拟合?过拟合是指模型在训练数据上表现极佳,但在新数据(测试数据或真实场景数据)上表现显著下降的现象。通俗来说,模型像一个“死记硬背的学生”,记住了训练集中
- java代码接入腾讯云上的deepseek
扣:2037218079
腾讯云云计算ai
之前已经试过用java代码去调用deepseek官网的api接口了.不管是被攻击还是啥,反正速度不尽人意.正好昨晚看到腾讯云上已经部署了满血的deepseek和其他的大模型,今天写一篇用java去调用deepseek的demo.1:api文档和计费查看.知识引擎原子能力对话-API文档-文档中心-腾讯云上面是api文档的地址需要获取secretid和secretkey还有app_key.前两个是腾
- Java实战:Spring Boot application.yml配置文件详解
web_13233421436
面试学习路线阿里巴巴javaspringboot网络
本文将详细介绍SpringBootapplication.yml配置文件的使用和配置项。我们将探讨application.yml文件的基本概念,以及如何使用它来配置SpringBoot应用程序的各个方面。此外,我们将通过具体的示例来展示如何配置不同的SpringBoot组件,如数据源、数据库、缓存、邮件服务等。本文适合希望深入了解SpringBoot配置文件的开发者阅读。一、引言在SpringBo
- 当通用智能遇到深度推理:如何正确驾驭DeepSeek-V3与R1?
涛涛讲AI
大模型大模型智能体扣子deepseek
欢迎来到涛涛聊AI。2025年,中国AI公司DeepSeek凭借两款大模型——通用型V3与推理型R1,在技术圈掀起巨浪。这两款模型看似师出同门,却在能力边界与应用场景上存在显著差异。本文将从技术本质、适用场景与实操技巧三个维度,剖析它们的差异与使用策略。一、定位差异:全能选手vs解题专家DeepSeek-V3:高性价比的“多面手”V3的核心目标是平衡性能与成本。它采用混合专家架构(MoE),参数规
- 本地部署大模型QPS推理测试
内卷焦虑人士
QPS本地部署大模型测试RAG
目录1、测试环境1.1、显卡1.2、模型1.3、部署环境1.3.1、docker1.3.2、执行命令2、测试问题2.1、20字左右问题2.2、50字左右问题2.3、100字左右问题3、测试代码3.1、通用测试代码3.2、通用测试代码(仅供参考)4、测试结果4.1、通用测试结果4.2、RAG测试结果1、测试环境1.1、显卡1.2、模型Qwen2.5-32B-Instruct1.3、部署环境xinfe
- 如何测试模型的推理速度
想要躺平的一枚
AI图像算法计算机视觉
前言模型的推理速度测试有两种方式:一种是使用python的时间戳time函数来记录,另一种是使用Pytorch里的Event。同时,在进行GPU测试时,为减少冷启动的状态影响,可以先进行预热。代码如下(示例):if__name__=="__main__":model=BiSeNet(backbone='STDCNet813',n_classes=2,export=True)model.cuda()
- 计算机网络知识点全梳理(一.TCP/IP网络模型)
hrhcode
计算机网络计算机网络tcp/ip网络
目录TCP/IP网络模型概述应用层什么是应用层应用层功能应用层协议传输层什么是传输层传输层功能传输层协议网络层什么是网络层网络层功能网络层协议数据链路层什么是数据链路层数据链路层功能物理层物理层的概念和功能写在前面本系列文章:计算机网络知识点全梳理(二.HTTP知识点总结)计算机网络知识点全梳理(三.TCP知识点总结)计算机网络知识点全梳理(四.IP知识点总结)TCP/IP网络模型概述在同一台设备
- linux Swap 分区
翱翔-蓝天
Linux运维实战linux运维服务器
Swap分区在Linux系统中的作用Swap分区(交换分区)相当于虚拟内存,在物理内存(RAM)不够用时,系统会将一部分磁盘空间作为虚拟内存使用。主要作用如下:缓解内存不足:当物理内存耗尽时,系统会将部分进程数据临时存放在Swap以防止系统崩溃。休眠(Hibernate)支持:部分Linux发行版支持系统休眠(suspend-to-disk),需要足够的Swap来存储RAM中的数据。缓存和后台进程
- Vision Transformer (ViT) 详细描述及 PyTorch 代码全解析
AIGC_ZY
CVtransformerpytorch深度学习
VisionTransformer(ViT)是一种将Transformer架构应用于图像分类任务的模型。它摒弃了传统卷积神经网络(CNN)的卷积操作,而是将图像分割成patches,并将这些patches视为序列输入到Transformer编码器中。ViT的处理流程输入图像被分割成多个固定大小的patch,每个patch经过线性投影变成嵌入向量,然后加上位置编码。接着,这些嵌入向量会和类别标签(c
- Godot引擎开发:UI和用户交互_UI性能优化
chenlz2007
游戏开发godotui交互游戏引擎性能优化
UI性能优化在动作游戏中,UI(用户界面)的性能优化是至关重要的。一个响应迅速、流畅的UI可以显著提升玩家的游戏体验。本节将详细介绍如何在Godot引擎中优化UI性能,包括优化节点结构、减少绘制调用、使用缓存技术、以及优化动画和过渡效果等方法。优化节点结构减少节点数量在Godot引擎中,每个节点都有一定的开销。因此,减少节点的数量可以显著提高UI的性能。可以通过以下几种方法实现:合并节点:将多个相
- 【AI大模型智能应用】Deepseek生成测试用例
柳柳的博客
AI大模型测试用例
在软件开发过程中,测试用例的设计和编写是确保软件质量的关键。然而,软件系统的复杂性不断增加,手动编写测试用例的工作量变得异常庞大,且容易出错。DeepSeek基于人工智能和机器学习,它能够依据软件的需求和设计文档,自动生成高质量的测试用例,显著减轻人工编写测试用例的负担。体验一把用DeepSeek编写测试用例,还生成清晰直观的思维导图,整个流程十分顺畅。这篇文章讲解如何使用deepseek生成功能
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号