- 被动的学习
乐婷0809
2019.3.6星期三雨读经人员:艳红雨乐宇婷诗经时间第514天读经内容:《黄帝内经》《唐诗三百首》《诗经》《新概念英语》保险这个词语对我很敏感,因为我只买了乡镇医疗险,其它保险真没有想买的意思,也一点都不懂得。下午老公的婶婶又叫我去听了一堂关于怎样去推销产品和发展人员的课,真的要睡着了,一点不明白。就在去年我上班都总要我去,今年不上班越总是说,对于在做保险这份工作的人,他们就说是在帮助一个家庭。
- LLM词频规律:Zipf定律
ZhangJiQun&MXP
教学2024大模型以及算力2021AIpython深度学习人工智能pytorch语言模型python
LLM词频规律:Zipf定律Zipf定律(Zipf’sLaw)是语言学和信息论中描述文本中词语出现频率分布的规律,由美国语言学家乔治·金斯利·齐夫(GeorgeKingsleyZipf)提出。其核心结论是:在自然语言的大型文本语料中,若将所有词语按出现频率从高到低排序,第n个词语的频率与n的倒数大致成正比。Zipf定律的数学表达若用f(n)f(n)f(n)表示排序后第n个词语的出现频率,CC
- LLM模型 贪婪、温度、Top-k、核采样方式的区别---附代码与示例
繁星意未平
AIpython开发语言
LLM模型贪婪、温度、Top-k、核采样方式的区别—附代码与示例在自然语言生成任务中,不同的采样技术用于从语言模型的输出中选择下一个生成的单词或词语。这些技术包括贪婪采样、温度采样、Top-k采样和核(Nucleus)采样。它们在选择生成单词的过程中有不同的策略,本文将介绍这四种采样方式的区别。1.贪婪采样(GreedySampling)贪婪采样是一种直接选择最可能的下一个词的策略。具体步骤为:从
- Datawhale组队学习打卡-Fun-transformer-Task3Encoder
宇宙第一小甜欣
学习transformer深度学习
今天的内容主要是Encoder部分的具体流程,多头注意力和交叉注意力,还是会有比较多的公式来厘清每部分的输入和输出以及对应的方法。Encoder如第一篇所说,Encoder是Transformer的第一部分,其主要任务是将输入序列(如文本、词语或字符)编码为一个上下文丰富的表示,Encoder的输出是Decoder的输入的一部分(用作Attention机制中的和)。1.Encoder的整体结构堆叠
- 脸
呓语biu
为什么总有人用容貌来开玩笑?真的有人会喜欢“你长的可真丑”“你除了XX外一无是处”这种玩笑吗?是词语匮乏、脑子空空没有其他话题可以继续还是本来就恶毒啊。女生对女生居然也有这种玩笑,是不是觉得很幽默啊?女生也有直男癌哦是不是还要对裹脚布凑近鼻子使劲闻闻够不够酸臭够不够熏人?长的美丑又不是我能决定的我真是碍到你的眼了呢,但更抱歉没有整容的打算不好意思还得恶心你哦。不理解对容貌过分苛刻的人。
- 当堂训练学生7个终生受益的好习惯
孙玲
习惯决定命运。习惯如此重要,重要的事情就应该在重要的地方——课堂上做。习课堂,每一节课上都训练学生终身受益的7个习惯。NO.1一边抄一边记的习惯很多学生抄写词语,只是为了完成老师布置的作业,而不是为了记住词语。等到要默写词语了,再拿起书来读啊记。一番事情偏偏花了两番的时间。习课堂要求当堂抄写、当堂默写,学生抄完后马上默写,从而强化学生一边抄一边记习惯。有的老师说,当堂抄写、当堂默写错得太多了。对,
- 综合学习的思考
杨小芹
“综合学习”这是一个特别不容易理解的词语。不光是我国,世界范围内应该都对这个词都有不同的理解。佐藤先生认为日本的杂志教育在对综合学习课程大多都停留在了观念层面。那么按照佐藤先生的理解,什么是“综合学习”呢?作者提到:学科学习的重要性也许今后也不会改变,但在进行学科学习的同时,也应该把处理人生征途中谁都会面临的现实课题、现代社会所要求的的现实问题的直接学习和学科学习并行起来加以组织。综合学习就是在想
- 孩子为什么胆小?方鱼为您深度解读孩子的内心世界
方鱼爱吃鱼
孩子为什么胆小?其实,我们可以从另一个角度看孩子胆小的问题。儿童教育其实我不喜欢对孩子用“胆小”这个词语,因为这相当于给孩子贴了一个标签。当你觉得孩子是胆小的,那么孩子做某些事情的时候,你会不自觉的想:孩子怎么这么胆小?但是也许你以为的胆小并不是胆小,可能是谨慎,内向,害羞,细心……等等。孩子到水池边去看鱼,不敢走近了。父母想要孩子更近一点看鱼,于是把孩子拽到离水面很近的地方。这时孩子害怕的直往后
- 【启航班航海日志】 1今天阅读《草房子》10万字
0e2ea6c34a3f
2这两天上课的时候,不是上英语就是上数学语文,很混乱,数学一般的写卷子,语文就是读一些课文和默写词语,英语就更简单了,背背背读一读就完了。3,每次我们都要午休,午休的时候老师给我们开空调,温度很低,22度,我们都要盖被子,起床的时候就是直接吃饭,每次吃饭的时候都很挤,都要往边上挪一挪,才能坐下,那个班里有好多人,所以都要挪一挪分两桌才可以坐下,有一部分中午就回家了,可是还有一大部分在那里睡觉,宿舍
- 你有清洁癖吗?
最等闲
文/最等闲看到一个段子:网友看完《断舍离》,大受启发,顺手就把《断舍离》给扔了。清洁癖应该是“断舍离”的一个分支,即定时打扫和整理你的所有事物,来达到心灵整洁和愉悦的一种方式。其实这是一种值得推广的习惯,但中国文化的博大精深之处一方面就体现在文字上,带病字框的词语,大多数情况下并不是好的词语。清洁的频率太高,涉入的事物太多,不仅达不到心灵的愉悦和整洁感,反而会使自己身心疲惫,甚至烦躁不安。这种程度
- 复刻手表多少钱可以买到,复刻手表一般多少钱
美表之家
复刻手表多少钱可以买到,复刻手表是一个在时尚和手表圈越来越火热的词语,它指的是模仿著名手表品牌的设计和细节,制成的相似性极高的手表。复刻手表在外观和功能上都与原版手表非常接近,但价格却远低于原版。关于复刻手表多少钱可以买到,复刻手表什么价位合适的问题,下面我们就来探讨一下。微信:83217080(下单赠送精美礼品)复刻手表多少钱可以买到复刻手表的价格范围广泛,大致在80到2000元之间。不同价格的
- “我多想……”见性情一一一记一次写话练习
静候花开_7090
今天课堂上,我带着学生复习课本第一二单元,读读课文,书空生字,练练词语,孩子们兴味盎然。看离下课还有几分钟,我就给每人发了一张写字纸,让他们以“我多想”开头,写写自己的希望或暑假旅游计划,我先做了示范,然后给了他们一分钟的思考时间,有小组交流的,有低头沉思的,还有问我地名生字的……都跃跃欲试的样子。拿到纸后,他们奋笔疾书,下课铃响了,他们竟然发出了“时间好短啊,怎么下课了?”的声音,写话这么受欢迎
- 710 完美心态要不得
木木sani
昨晚听写,50个词语,100个字,错了22个词,15个字,这50个词是平时学习过程中就处于模糊状态的,所以孩子的进步还是很大的。只是,我需要的是,他都写对!也就是说没有达到预期,我的要求。于是,冲突矛盾不可避免,家长不高兴孩子不乐意!这个是三年级一个家长的总结,对于二年级的陈小冠来说,这个寒假真是一个关键时刻。拉下的整整一年级的时间都要在二年级不上来。9月份开始的时候,我就分析了孩子的薄弱环节,老
- (Python基础篇)字典的操作
EternityArt
基础篇python开发语言
一、引言在Python编程中,字典(Dictionary)是一种极具灵活性的数据结构,它通过“键-值对”(key-valuepair)的形式存储数据,如同现实生活中的字典——通过“词语(键)”快速查找“释义(值)”。相较于列表和元组的有序索引访问,字典的优势在于基于键的快速查找,这使得它在处理需要频繁通过唯一标识获取数据的场景中极为高效。掌握字典的操作,能让我们更高效地组织和管理复杂数据,是Pyt
- LLM中 最后一个词语的表征(隐藏状态)通常会融合前面所有词语的信息吗?
ZhangJiQun&MXP
教学2024大模型以及算力2021AIpython机器学习算法深度学习人工智能
LLM中最后一个词语的表征(隐藏状态)通常会融合前面所有词语的信息吗?在大语言模型(LLM)中,最后一个词语的表征(隐藏状态)通常会融合前面所有词语的信息,这是由LLM的核心架构(以Transformer为基础)决定的,具体可以从以下角度理解:1.核心机制:自注意力(Self-Attention)的作用现代LLM(如GPT系列、Qwen等)均基于Transformer架构,其核心是自注意力机制。在
- LLM的表征做减法的是什么,自然语言是一个矩阵,怎么进行减法的
ZhangJiQun&MXP
教学2024大模型以及算力2021AIpython计算机视觉人工智能机器学习算法深度学习
LLM的表征做减法的是什么,自然语言是一个矩阵,怎么进行减法的有个假设:就是最后一个词语融合了前面词语的信息减法操作主要用于提取模型内部表征中的"诚实性"概念向量。具体来说,这是通过对比诚实和不诚实场景下的模型隐藏状态实现的。importtorchfromtransformersimportAutoModelForCausalLM,AutoTokenizer,AutoConfigimportnum
- 将oracle表字段json字符串分解提取并返回单列表
skillfulit
oraclejson数据库
将oracle表字段json字符串分解提取并返回单列表oracle版本11gR2(11.2.0.4.0)原始表字段内容{"FRAME_INFO":["0,0,-1,1800,1800,5992,191,20","1,0,-1,2000,1800,5992,188,20","2,0,-1,1800,1800,5992,182,20","3,0,-1,1800,1800,5992,177,20","4
- LSA主题模型:基于奇异值分解的主题模型
AI天才研究院
AI人工智能与大数据AI大模型企业级应用开发实战计算计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
LSA主题模型:基于奇异值分解的主题模型1.背景介绍主题模型是一种无监督的机器学习技术,用于发现大规模文本语料库中隐藏的语义结构。它能够自动识别文档集合中的主题,并根据这些主题对文档进行聚类和分类。主题模型在文本挖掘、信息检索、推荐系统等领域有着广泛的应用。LSA(LatentSemanticAnalysis)是一种经典的主题模型算法,基于奇异值分解(SVD)对词-文档矩阵进行分解,从而揭示词语和
- 基于KANO模型的调研问卷设计避坑
Alex艾力的IT数字空间
产品经理原型模式产品运营交互设计规范腾讯会议蓝湖
KANO模型调研中,设计无引导性偏差的问卷需遵循中立表述、选项平衡、逻辑验证原则。一、避免引导性偏差的核心策略1.问题中性化设计禁用倾向性词汇:避免“优化”“提升”等暗示性词语,改用中性描述。❌引导性:“增加扫码支付功能会让体验更好吗?”✅中性化:“扫码支付功能的存在对您来说如何?”对称性表述:正向/反向问题结构完全对仗,仅改变核心条件。正向:“提供XX功能时,您的满意度如何?”反向:“不提供XX
- 云计算和云服务有啥区别
云计算技术在近些年成为了很多人口中的口头禅,然而我们还注意到,在谈论云计算这种技术的过程当中,除了“云计算”这个词之外,往往还会提及“云服务”,对于这样两个词语来说,其在商业模式的运作以及平台管理等方面究竟有何区别呢?云计算和云服务区别是什么?提到云计算,不少人会想起三个词汇——IaaS、PaaS和SaaS,单从字面来讲,其中的S是Service(服务)的缩写,也是云计算最典型的三种服务模式。不太
- 机器学习路径规划中的 net 和 netlist 分别是什么?
勤奋的大熊猫
MachineLearning机器学习人工智能自动寻路
机器学习路径规划中的net是什么?引言正文net含义netlist含义引言当我们使用机器学习训练自己的模型来进行自动寻路时,通常,我们会遇到一个名为net的词语,这里我们将对这个单词的意思进行解释。正文net含义net:中文翻译为网络,在机器学习中其中文应该翻译为连线任务。通常在连线任务中我们需要将给定的两个端点连接起来。比如给定的端点为:self.netlist=[('mmi:out1','mm
- 扎根理论编码的操作
编码是一个对于深度访谈资料中的词句、段落等片段不断进行分析概括和归纳标识的过程。开放式编码是指对访谈资料的词句和片段进行概念化、抽象化的标示。它既可以是访谈对象所使用的生动、鲜明的词语,也可以是研究人员从资料阅读中所抽象出的名词和概念。关联式编码的目的就是理清各个概念及其之间的相互关系,通过对概念之间关系的反复思考和分析,整合出更高抽象层次的范畴,并确定相关范畴的性质和维度。选择式编码的任务则是系
- 解释LLM怎么预测下一个词语的
ZhangJiQun&MXP
教学2024大模型以及算力2021AIpython语言模型python深度学习人工智能机器学习
解释LLM怎么预测下一个词语的通过上文词的向量进行映射在Transformer架构的大语言模型(如GPT系列、BERT等)中,词语会先被转化为词向量。在预测下一个词时,模型会基于之前所有词的向量表示(并非仅仅上一个词,但上一个词的向量是重要信息来源之一)进行计算。以GPT-2为例,在生成文本时,它会将输入文本中每个词对应的词向量依次输入到模型的多层Transformer编码器-解码器结构中。每一层
- [AI笔记]-Word2Vec面试考点
Micheal超
AI笔记人工智能笔记word2vec
✅一、基础认知类什么是Word2Vec?它的基本思想是什么?关键词:将词语转换为向量表示;捕捉语义关系;基于上下文预测Word2Vec与One-hot编码的区别?关键词:维度灾难(维度过高,存储空间大)、高稀疏性、语义表达能力(没有距离概念,无法计算相似度)、内积关系Word2Vec的两种模型是什么?它们有何区别?答案:Word2Vec的重要假设:文本中离得越近的词语相似度越高。主要有:CBOW(
- NLP随机插入
Humbunklung
机器学习自然语言处理人工智能pythonnlp
文章目录随机插入示例Python代码示例随机插入随机插入是一种文本数据增强方法,其核心思想是在原句中随机选择若干位置,插入与上下文相关的词语,从而生成新的训练样本。这种方法能够增加句子的多样性,提高模型对不同词序和表达方式的鲁棒性。示例原句:机器学习可以提升数据分析的效率。随机插入后(插入“显著”):机器学习可以显著提升数据分析的效率。Python代码示例下面是一个简单的随机插入实现,假设我们有一
- AIDeepSeekLe - Typecho AI摘要生成插件
独立开发者阿乐
原创人工智能数据库aiAI写作
文章目录生成文章标题的方法标题优化技巧功能特点安装方法配置说明使用方法手动生成摘要自动生成摘要摘要显示插件优势框架设计核心文件工作流程数据存储常见问题生成文章标题的方法理解文章的核心主题和关键信息,确保标题能准确概括内容。分析目标读者群体,根据受众的兴趣和需求调整标题风格。使用简洁有力的词语,避免冗长或复杂的表达,保持标题清晰易懂。考虑使用疑问句或数字列表等吸引眼球的句式,增加标题的吸引力。标题优
- Word2Vec 原理是什么
ZhangJiQun&MXP
教学2024大模型以及算力2021AIpythonword2vec人工智能自然语言处理
Word2Vec原理是什么一、核心概念:从词语到向量的语义映射Word2Vec是2013年由Google提出的词嵌入(WordEmbedding)模型,其核心目标是将自然语言中的词语转换为稠密的连续向量(词向量),使向量空间中的距离能反映词语的语义相关性。本质:通过神经网络学习词语的分布式表示(DistributedRepresentation),打破传统one-hot编码“维度高、无语义关联”的
- 人工智能100问☞第48问:GPT是怎么生成文本的?
AI算力那些事儿
人工智能100问人工智能gpt
目录一、通俗解释二、专业解释三、权威参考GPT生成文本的核心机制是通过Transformer架构的自回归模型,基于已输入内容逐词预测概率最高的后续词汇,循环迭代直至形成完整文本。一、通俗解释GPT生成文本就像玩文字接龙游戏,但拥有超强记忆力:1、海量阅读:它先“啃完”整个互联网的书籍文章(预训练),像学霸记下所有词语搭配规律。2、逐词接龙:当你输入提示(如“夏天午后...”),它根据前文预测最可能
- 【Elasticsearch】TF-IDF 和 BM25相似性算法
risc123456
Elasticsearchelasticsearch
在Elasticsearch中,TF-IDF和BM25是两种常用的文本相似性评分算法,但它们的实现和应用场景有所不同。以下是对这两种算法的对比以及在Elasticsearch中的使用情况:TF-IDF-定义与原理:TF-IDF是一种经典的信息检索算法,用于评估一个词语对于一个文件集或语料库中某份文件的重要程度。它由两部分组成:-TF(TermFrequency):词频,即词语在文档中出现的次数。-
- Python实现小说词频统计
I_Scholar
pythonwindows开发语言
源码地址:python实现小说词频统计资源-CSDN文库这段代码实现了一个简单的文本分析工具,主要用于统计用户指定的词语在小说中的出现次数、位置和频次。以下是代码的详细解析和功能说明:1.功能概述选择文件:通过文件对话框选择一个小说文件。读取文件内容:将小说文件的内容读取到一个字符串中。去除标点符号:从文本中去除指定的标点符号。统计词频:统计用户指定的词语在小说中的出现次数、位置和频次。输出结果:
- jvm调优总结(从基本概念 到 深度优化)
oloz
javajvmjdk虚拟机应用服务器
JVM参数详解:http://www.cnblogs.com/redcreen/archive/2011/05/04/2037057.html
Java虚拟机中,数据类型可以分为两类:基本类型和引用类型。基本类型的变量保存原始值,即:他代表的值就是数值本身;而引用类型的变量保存引用值。“引用值”代表了某个对象的引用,而不是对象本身,对象本身存放在这个引用值所表示的地址的位置。
- 【Scala十六】Scala核心十:柯里化函数
bit1129
scala
本篇文章重点说明什么是函数柯里化,这个语法现象的背后动机是什么,有什么样的应用场景,以及与部分应用函数(Partial Applied Function)之间的联系 1. 什么是柯里化函数
A way to write functions with multiple parameter lists. For instance
def f(x: Int)(y: Int) is a
- HashMap
dalan_123
java
HashMap在java中对很多人来说都是熟的;基于hash表的map接口的非同步实现。允许使用null和null键;同时不能保证元素的顺序;也就是从来都不保证其中的元素的顺序恒久不变。
1、数据结构
在java中,最基本的数据结构无外乎:数组 和 引用(指针),所有的数据结构都可以用这两个来构造,HashMap也不例外,归根到底HashMap就是一个链表散列的数据
- Java Swing如何实时刷新JTextArea,以显示刚才加append的内容
周凡杨
java更新swingJTextArea
在代码中执行完textArea.append("message")后,如果你想让这个更新立刻显示在界面上而不是等swing的主线程返回后刷新,我们一般会在该语句后调用textArea.invalidate()和textArea.repaint()。
问题是这个方法并不能有任何效果,textArea的内容没有任何变化,这或许是swing的一个bug,有一个笨拙的办法可以实现
- servlet或struts的Action处理ajax请求
g21121
servlet
其实处理ajax的请求非常简单,直接看代码就行了:
//如果用的是struts
//HttpServletResponse response = ServletActionContext.getResponse();
// 设置输出为文字流
response.setContentType("text/plain");
// 设置字符集
res
- FineReport的公式编辑框的语法简介
老A不折腾
finereport公式总结
FINEREPORT用到公式的地方非常多,单元格(以=开头的便被解析为公式),条件显示,数据字典,报表填报属性值定义,图表标题,轴定义,页眉页脚,甚至单元格的其他属性中的鼠标悬浮提示内容都可以写公式。
简单的说下自己感觉的公式要注意的几个地方:
1.if语句语法刚接触感觉比较奇怪,if(条件式子,值1,值2),if可以嵌套,if(条件式子1,值1,if(条件式子2,值2,值3)
- linux mysql 数据库乱码的解决办法
墙头上一根草
linuxmysql数据库乱码
linux 上mysql数据库区分大小写的配置
lower_case_table_names=1 1-不区分大小写 0-区分大小写
修改/etc/my.cnf 具体的修改内容如下:
[client]
default-character-set=utf8
[mysqld]
datadir=/var/lib/mysql
socket=/va
- 我的spring学习笔记6-ApplicationContext实例化的参数兼容思想
aijuans
Spring 3
ApplicationContext能读取多个Bean定义文件,方法是:
ApplicationContext appContext = new ClassPathXmlApplicationContext(
new String[]{“bean-config1.xml”,“bean-config2.xml”,“bean-config3.xml”,“bean-config4.xml
- mysql 基准测试之sysbench
annan211
基准测试mysql基准测试MySQL测试sysbench
1 执行如下命令,安装sysbench-0.5:
tar xzvf sysbench-0.5.tar.gz
cd sysbench-0.5
chmod +x autogen.sh
./autogen.sh
./configure --with-mysql --with-mysql-includes=/usr/local/mysql
- sql的复杂查询使用案列与技巧
百合不是茶
oraclesql函数数据分页合并查询
本片博客使用的数据库表是oracle中的scott用户表;
------------------- 自然连接查询
查询 smith 的上司(两种方法)
&
- 深入学习Thread类
bijian1013
javathread多线程java多线程
一. 线程的名字
下面来看一下Thread类的name属性,它的类型是String。它其实就是线程的名字。在Thread类中,有String getName()和void setName(String)两个方法用来设置和获取这个属性的值。
同时,Thr
- JSON串转换成Map以及如何转换到对应的数据类型
bijian1013
javafastjsonnet.sf.json
在实际开发中,难免会碰到JSON串转换成Map的情况,下面来看看这方面的实例。另外,由于fastjson只支持JDK1.5及以上版本,因此在JDK1.4的项目中可以采用net.sf.json来处理。
一.fastjson实例
JsonUtil.java
package com.study;
impor
- 【RPC框架HttpInvoker一】HttpInvoker:Spring自带RPC框架
bit1129
spring
HttpInvoker是Spring原生的RPC调用框架,HttpInvoker同Burlap和Hessian一样,提供了一致的服务Exporter以及客户端的服务代理工厂Bean,这篇文章主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
在
【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中
- 【Mahout二】基于Mahout CBayes算法的20newsgroup的脚本分析
bit1129
Mahout
#!/bin/bash
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information re
- nginx三种获取用户真实ip的方法
ronin47
随着nginx的迅速崛起,越来越多公司将apache更换成nginx. 同时也越来越多人使用nginx作为负载均衡, 并且代理前面可能还加上了CDN加速,但是随之也遇到一个问题:nginx如何获取用户的真实IP地址,如果后端是apache,请跳转到<apache获取用户真实IP地址>,如果是后端真实服务器是nginx,那么继续往下看。
实例环境: 用户IP 120.22.11.11
- java-判断二叉树是不是平衡
bylijinnan
java
参考了
http://zhedahht.blog.163.com/blog/static/25411174201142733927831/
但是用java来实现有一个问题。
由于Java无法像C那样“传递参数的地址,函数返回时能得到参数的值”,唯有新建一个辅助类:AuxClass
import ljn.help.*;
public class BalancedBTree {
- BeanUtils.copyProperties VS PropertyUtils.copyProperties
诸葛不亮
PropertyUtilsBeanUtils
BeanUtils.copyProperties VS PropertyUtils.copyProperties
作为两个bean属性copy的工具类,他们被广泛使用,同时也很容易误用,给人造成困然;比如:昨天发现同事在使用BeanUtils.copyProperties copy有integer类型属性的bean时,没有考虑到会将null转换为0,而后面的业
- [金融与信息安全]最简单的数据结构最安全
comsci
数据结构
现在最流行的数据库的数据存储文件都具有复杂的文件头格式,用操作系统的记事本软件是无法正常浏览的,这样的情况会有什么问题呢?
从信息安全的角度来看,如果我们数据库系统仅仅把这种格式的数据文件做异地备份,如果相同版本的所有数据库管理系统都同时被攻击,那么
- vi区段删除
Cwind
linuxvi区段删除
区段删除是编辑和分析一些冗长的配置文件或日志文件时比较常用的操作。简记下vi区段删除要点备忘。
vi概述
引文中并未将末行模式单独列为一种模式。单不单列并不重要,能区分命令模式与末行模式即可。
vi区段删除步骤:
1. 在末行模式下使用:set nu显示行号
非必须,随光标移动vi右下角也会显示行号,能够正确找到并记录删除开始行
- 清除tomcat缓存的方法总结
dashuaifu
tomcat缓存
用tomcat容器,大家可能会发现这样的问题,修改jsp文件后,但用IE打开 依然是以前的Jsp的页面。
出现这种现象的原因主要是tomcat缓存的原因。
解决办法如下:
在jsp文件头加上
<meta http-equiv="Expires" content="0"> <meta http-equiv="kiben&qu
- 不要盲目的在项目中使用LESS CSS
dcj3sjt126com
Webless
如果你还不知道LESS CSS是什么东西,可以看一下这篇文章,是我一朋友写给新人看的《CSS——LESS》
不可否认,LESS CSS是个强大的工具,它弥补了css没有变量、无法运算等一些“先天缺陷”,但它似乎给我一种错觉,就是为了功能而实现功能。
比如它的引用功能
?
.rounded_corners{
- [入门]更上一层楼
dcj3sjt126com
PHPyii2
更上一层楼
通篇阅读完整个“入门”部分,你就完成了一个完整 Yii 应用的创建。在此过程中你学到了如何实现一些常用功能,例如通过 HTML 表单从用户那获取数据,从数据库中获取数据并以分页形式显示。你还学到了如何通过 Gii 去自动生成代码。使用 Gii 生成代码把 Web 开发中多数繁杂的过程转化为仅仅填写几个表单就行。
本章将介绍一些有助于更好使用 Yii 的资源:
- Apache HttpClient使用详解
eksliang
httpclienthttp协议
Http协议的重要性相信不用我多说了,HttpClient相比传统JDK自带的URLConnection,增加了易用性和灵活性(具体区别,日后我们再讨论),它不仅是客户端发送Http请求变得容易,而且也方便了开发人员测试接口(基于Http协议的),即提高了开发的效率,也方便提高代码的健壮性。因此熟练掌握HttpClient是很重要的必修内容,掌握HttpClient后,相信对于Http协议的了解会
- zxing二维码扫描功能
gundumw100
androidzxing
经常要用到二维码扫描功能
现给出示例代码
import com.google.zxing.WriterException;
import com.zxing.activity.CaptureActivity;
import com.zxing.encoding.EncodingHandler;
import android.app.Activity;
import an
- 纯HTML+CSS带说明的黄色导航菜单
ini
htmlWebhtml5csshovertree
HoverTree带说明的CSS菜单:纯HTML+CSS结构链接带说明的黄色导航
在线体验效果:http://hovertree.com/texiao/css/1.htm代码如下,保存到HTML文件可以看到效果:
<!DOCTYPE html >
<html >
<head>
<title>HoverTree
- fastjson初始化对性能的影响
kane_xie
fastjson序列化
之前在项目中序列化是用thrift,性能一般,而且需要用编译器生成新的类,在序列化和反序列化的时候感觉很繁琐,因此想转到json阵营。对比了jackson,gson等框架之后,决定用fastjson,为什么呢,因为看名字感觉很快。。。
网上的说法:
fastjson 是一个性能很好的 Java 语言实现的 JSON 解析器和生成器,来自阿里巴巴的工程师开发。
- 基于Mybatis封装的增删改查实现通用自动化sql
mengqingyu
DAO
1.基于map或javaBean的增删改查可实现不写dao接口和实现类以及xml,有效的提高开发速度。
2.支持自定义注解包括主键生成、列重复验证、列名、表名等
3.支持批量插入、批量更新、批量删除
<bean id="dynamicSqlSessionTemplate" class="com.mqy.mybatis.support.Dynamic
- js控制input输入框的方法封装(数字,中文,字母,浮点数等)
qifeifei
javascript js
在项目开发的时候,经常有一些输入框,控制输入的格式,而不是等输入好了再去检查格式,格式错了就报错,体验不好。 /** 数字,中文,字母,浮点数(+/-/.) 类型输入限制,只要在input标签上加上 jInput="number,chinese,alphabet,floating" 备注:floating属性只能单独用*/
funct
- java 计时器应用
tangqi609567707
javatimer
mport java.util.TimerTask; import java.util.Calendar; public class MyTask extends TimerTask { private static final int
- erlang输出调用栈信息
wudixiaotie
erlang
在erlang otp的开发中,如果调用第三方的应用,会有有些错误会不打印栈信息,因为有可能第三方应用会catch然后输出自己的错误信息,所以对排查bug有很大的阻碍,这样就要求我们自己打印调用的栈信息。用这个函数:erlang:process_display (self (), backtrace).需要注意这个函数只会输出到标准错误输出。
也可以用这个函数:erlang:get_s