from __future__ import print_function
import tensorflow as tf
from tensorflow.contrib import rnn
import numpy as np
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
'''
To classify images using a bidirectional recurrent neural network, we consider
every image row as a sequence of pixels. Because MNIST image shape is 28*28px,
we will then handle 28 sequences of 28 steps for every sample.
'''
learning_rate = 0.001
training_steps = 10000
batch_size = 128
display_step = 200
num_input = 28
timesteps = 28
num_hidden = 128
num_classes = 10
X = tf.placeholder("float", [None, timesteps, num_input])
Y = tf.placeholder("float", [None, num_classes])
weights = {
'out': tf.Variable(tf.random_normal([2*num_hidden, num_classes]))
}
biases = {
'out': tf.Variable(tf.random_normal([num_classes]))
}
def BiRNN(x, weights, biases):
x = tf.unstack(x, timesteps, 1)
lstm_fw_cell = rnn.BasicLSTMCell(num_hidden, forget_bias=1.0)
lstm_bw_cell = rnn.BasicLSTMCell(num_hidden, forget_bias=1.0)
try:
outputs, _, _ = rnn.static_bidirectional_rnn(lstm_fw_cell, lstm_bw_cell, x,
dtype=tf.float32)
except Exception:
outputs = rnn.static_bidirectional_rnn(lstm_fw_cell, lstm_bw_cell, x,
dtype=tf.float32)
return tf.matmul(outputs[-1], weights['out']) + biases['out']
logits = BiRNN(X, weights, biases)
prediction = tf.nn.softmax(logits)
loss_op = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(
logits=logits, labels=Y))
optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)
train_op = optimizer.minimize(loss_op)
correct_pred = tf.equal(tf.argmax(prediction, 1), tf.argmax(Y, 1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
for step in range(1, training_steps+1):
batch_x, batch_y = mnist.train.next_batch(batch_size)
batch_x = batch_x.reshape((batch_size, timesteps, num_input))
sess.run(train_op, feed_dict={X: batch_x, Y: batch_y})
if step % display_step == 0 or step == 1:
loss, acc = sess.run([loss_op, accuracy], feed_dict={X: batch_x,
Y: batch_y})
print("Step " + str(step) + ", Minibatch Loss= " + \
"{:.4f}".format(loss) + ", Training Accuracy= " + \
"{:.3f}".format(acc))
print("Optimization Finished!")
test_len = 128
test_data = mnist.test.images[:test_len].reshape((-1, timesteps, num_input))
test_label = mnist.test.labels[:test_len]
print("Testing Accuracy:", \
sess.run(accuracy, feed_dict={X: test_data, Y: test_label}))