- CBNetV2: A Composite Backbone Network Architecture for Object Detection论文阅读
Laughing-q
论文阅读深度学习人工智能目标检测实例分割transformer
CBNetV2:ACompositeBackboneNetworkArchitectureforObjectDetection论文阅读介绍方法CBNetV2融合方式对Assistant的监督实验与SOTA的比较在主流backbone架构上的通用性与更宽更深的网络比较与可变形卷积的兼容在主流检测器上的模型适用性在SwinTransformer上的模型适用性消融实验paper:https://arxi
- COMP 5076 Problem Solving in the Digital Age
后端
COMP5076ProblemSolvingintheDigitalAgeAssignment1–Wizard-of-OzPaperPrototypeUniSASTEMTheUniversityofSouthAustralia2025SP2Warning:ThismaterialhasbeenreproducedandcommunicatedtoyoubyoronbehalfoftheUniver
- CVPR2025 | 对抗样本&智能安全方向论文汇总 | 持续更新中~
四口鲸鱼爱吃盐
文献阅读安全transformer深度学习对抗样本神经网络视觉语言模型后门攻击
汇总结果来源:CVPR2025AcceptedPapers若文中出现的论文链接和GitHub链接点不开,则说明还未公布,在公布后笔者会及时添加.若笔者未及时添加,欢迎读者告知.文章根据题目关键词搜索,可能会有遗漏.若笔者出现遗漏,欢迎告知.部分文章还未公布正文,只有名称.MindtheGap:通过查询更新分析检测正在进行中的黑盒对抗攻击MindtheGap:DetectingBlack-boxAd
- ACI EP Learning Whitepaper 1. ACI EP组件
m0_54931486
思科ACI网络思科ACIEndpointACIfabricNexusEP学习
1.ACIEndpointACI网络架构的Endpoint表整合了传统MAC地址表和ARP表的功能。其核心机制是通过硬件层直接学习数据包的源MAC地址与IP地址映射关系,摒弃了传统ARP协议依赖广播请求获取下一跳MAC地址的模式。这种设计优化体现在两方面:1)减少控制面ARP流量处理带来的资源消耗;2)基于终端实际流量即可实时感知主机IP/MAC地址的拓扑迁移,无需依赖GARP通告即可实现终端移动
- 【DeepSeek干货总结】对不同类型学术内容进行润色的顶级提示词汇总!
AIWritePaper官方账号
DeepSeekPromptAIWritePaperAIWritePaperdeepseek深度学习人工智能AIGC论文润色
目录1.英文润色2.中文润色3.SCI润色4.润色Prompt汇总连贯性与句子逻辑提示词多参考版本提示词语法矫正提示词润色内容定位提示词修改建议提示词大家好这里是AIWritePaper官方账号!AIWritePaper官网AIWritePaper宝子们在写学术论文的过程中要想让DeepSeek发挥出最佳效能,尤其在进行文本润色时,精确和具体的提示词至关重要。很多宝子们在请求DeepSeek文本润
- 图形编辑器基于Paper.js教程25:材料测试矩阵功能的实现
拿我格子衫来
激光切割图形编辑器Paper.js矩阵线性代数图像处理javascript编辑器前端
最近做了一个材料测试矩阵的需求,现在已经上线了,现在来回顾总结一下,有哪些做的好的,有哪些做的不好的。材料测试矩阵在测试激光头在某一种材料上的表现,很有必要,如果你在一种新的材料上进行加工时,最好先做一次材料测试矩阵,挑选出合适的功率和速度。材料测试矩阵的表单比较多横坐标是功率,纵坐标是速度。最终雕刻效果是会把雕刻的木板切割下来。整个表单需要设置,雕刻模式还是切割模式,然后设置最小最大速度,最小最
- Python Turtle 海龟画图 官方文档
Leleprogrammer
python开发语言后端turtle
turtle---海龟绘图源码:Lib/turtle.py概述海龟绘图很适合用来引导孩子学习编程。最初来自于WallyFeurzeig,SeymourPapert和CynthiaSolomon于1967年所创造的Logo编程语言。请想象绘图区有一只机器海龟,起始位置在x-y平面的(0,0)点。先执行importturtle,再执行turtle.forward(15),它将(在屏幕上)朝所面对的x轴
- 玩转Python绘图利器——Turtle库
Ai_绘画小南
python开发语言信息可视化
Turtle是Python语言中的一个重要的绘图库,它提供了简单易用的绘图功能,适用于所有年龄段的程序员。本文将详细介绍Turtle库的使用方法,并给出多种实例,帮助读者快速上手。一、Turtle库简介Turtle库最早由WallyFeurzeig、SeymourPapert和CynthiaSolomon等人在1960年代末期开发,目的是为了教学和艺术创作。它利用海龟的图形来操作画笔,通过简单的指
- 多分类—微调DistilBERT对生物医学文本进行实验方法多分类:Automated Text Mining of Experimental Methodologies from Biomedical
小小帅AIGC
informationextraction人工智能自然语言处理语言模型多分类学术领域生物医学
AutomatedTextMiningofExperimentalMethodologiesfromBiomedicalLiterature从生物医学文献中自动挖掘实验方法文本paper:https://arxiv.org/abs/2404.13779github:本文做的就是微调DistilBERT去做多分类任务,训练自己的数据集,分类每个句子对应的实验方法。没有什么讲的。文章目录~1.背景动机
- 第81期 | GPTSecurity周报
aigc网络安全
GPTSecurity是一个涵盖了前沿学术研究和实践经验分享的社区,集成了生成预训练Transformer(GPT)、人工智能生成内容(AIGC)以及大语言模型(LLM)等安全领域应用的知识。在这里,您可以找到关于GPT/AIGC/LLM最新的研究论文、博客文章、实用的工具和预设指令(Prompts)。现为了更好地知悉近一周的贡献内容,现总结如下。SecurityPapers1.大语言模型与代码安
- LLM填坑:训练自己的分词器-Tokenizer
微风❤水墨
LLM&AIGC&VLP人工智能
说明:文本搬运以下文章,略微调整,有需求可参考原文。paper:https://zhuanlan.zhihu.com/p/625715830code:Chatterbox/example/TrainTokenizersExample/train_tokenizers.pyatmain·enze5088/Chatterbox·GitHubHuaggingface教程:
- 【华为机考E卷】-“第k个排列”题解思路java
Coder灬永不止步
算法-机考E卷华为java算法
算法每一题,成长每一天~C0E33第k个排列真题链接:【持续更新】2024华为OD机试E卷机考真题库清单(全真题库)思路Javapackagecom.ccr.paper_f;importjava.util.ArrayList;importjava.util.List;importjava.util.Scanner;publicclassC0E33{publicstaticvoidmain(Stri
- 可重构智能表面仿真平台
brook1711
RIS
RIScomponentsThisisapythonprojectforRIS(reconfigurableintelligentsurface)simulations.relatedworksMyfirstpaperLinktomypaper/Pdftomypaper:[1]X.Guo,Y.ChenandY.Wang,“Learning-basedRobustandSecureTransmiss
- 【每日论文】Forgetting Transformer: Softmax Attention with a Forget Gate
WHATEVER_LEO
每日论文transformer深度学习人工智能自然语言处理计算机视觉语言模型
下载PDF或查看论文,请点击:LlamaFactory-huggingfacedailypaper-每日论文解读|LlamaFactory|LlamaFactory摘要现代循环序列模型的一个关键组件是遗忘门。虽然Transformer没有显式的循环形式,但我们展示了一种通过以数据依赖的方式降低未归一化注意力分数的自然方法,将遗忘门融入Transformer。我们称这种注意力机制为“遗忘注意力”,并
- (即插即用模块-特征处理部分) 三十、(2024) BFAM & CBM & DFEM 特征聚合+特征提取+边界感知
御宇w
即插即用-特征处理深度学习计算机视觉即插即用模块
文章目录1、BitemporalFeatureAggregationModule2、ChangeBoundary-AwareModule3、DeepFeatureExtractionModule4、代码实现paper:B2CNet:AProgressiveChangeBoundary-to-CenterRefinementNetworkforMultitemporalRemoteSensingIm
- 2022IJCAI速读:SparseTT,使用稀疏Transformers进行视觉跟踪
夜深人静打代码
目标检测跟踪论文速读专栏视觉跟踪计算机视觉目标检测人工智能
原文标题:SparseTT:VisualTrackingwithSparseTransformers中文标题:SparseTT:使用稀疏Transformers进行视觉跟踪代码地址:GitHub-fzh0917/SparseTT:Theofficialimplementationforpaper"SparseTT:VisualTrackingwithSparseTransformers"具体见:2
- GPT论文润色prompt模板
s95.
gptprompt
IampreparingtosubmitmyacademicpapertoXXX(期刊/会议),pleasepolisheachparagraphinthestyleofaXXX(期刊/会议)article.YouarenowactingasanexpertinthefieldofXXX(专业领域).Fromaprofessionalpointofview,couldyoupleaserefine
- DAHSF: An Algorithm for Sequence Parsing for Specific Scenarios and Lightweight Deployment
AI是这个时代的魔法
新程序员魔法魔法传奇人工智能自然语言处理算法数据结构人机交互
FullPaperhttps://alphaxiv.org/pdf/2412.14054ProjectLinkhttps://blog.csdn.net/m0_62984100/article/details/140054725Githubhttps://github.com/Magic-Abracadabra/DAHSF/blob/main/DAHSF.pdfDigestionAlgorithm
- Python爬虫丨批量下载必应4K壁纸
凌小添
Python爬虫项目python爬虫开发语言
1.项目背景经常用电脑的朋友应该会发现,电脑锁屏页面是微软必应每天更新的精美壁纸,偶尔还能看到一些十分惊艳的壁纸,于是我去寻找如何下载他们,我在GitHub上闲逛时,还真发现一个自动归档这些壁纸的仓库。该项目由GitHub用户niumoo维护,项目地址:niumoo/bing-wallpaper。该项目每天自动归档必应首页美图!但当我点开README.md时,发现仓库仅保存图片Markdown索引
- Paper Reading | AI & 数据库融合经典论文回顾
数据库人工智能阅读
人工智能(AI)和数据库(DB)在过去的50年里得到了广泛的研究,随着数据库近年来的不断发展,数据库开始与人工智能结合,数据库和人工智能(AI)可以相互促进。一方面,AI可以使数据库更加智能化(AI4DB)。例如,传统的数据库优化技术无法满足大规模数据库实例、各种应用程序和多样化用户的高性能要求,尤其是在云上。幸运的是,基于机器学习的技术可以缓解这个问题。另一方面,数据库技术可以优化AI模型(DB
- MoE-FFD:Mixture of Experts for Generalized and Parameter-Efficient Face Forgery Detection
Sherry Wangs
DeepfakeDetection人工智能pytorch
来源:2024arXiv(submittedTDSC,CCF-A)作者:ChenqiKong1,AnweiLuo2,PeijunBao1,YiYu1,HaoliangLi3,ZengweiZheng4,ShiqiWang3andAlexC.Kot1单位:1新加坡南洋理工大学;2中山大学;3香港城市大学;4浙江大学;Paper:https://arxiv.org/pdf/2404.08452Code
- Readability.js 与 Newspaper提取网页内容和元数据
黑金IT
nodejs开发语言全文检索
在当今信息爆炸的时代,网页内容的提取和处理变得尤为重要。无论是从新闻网站、博客还是教程网站中提取内容,都需要一个高效、准确的工具来帮助我们去除无关信息,提取出有价值的正文内容。这不仅能够提高我们的工作效率,还能让我们更好地专注于内容本身。为什么选择Readability.js和Newspaper?Readability.js和Newspaper是两个非常流行的Node.js库,它们能够帮助我们从网
- 强化学习与网络安全资源-论文和环境
AI拉呱
web安全安全
TableofContentsRL-EnvironmentsPapersBooksBlogpostsTalksMiscellaneous↑EnvironmentsPentestingTrainingFrameworkforReinforcementLearningAgents(PenGym)TheARCDPrimary-levelAITrainingEnvironment(PrimAITE)CSL
- Qwen的github主页 - 介绍
强化学习曾小健
#Qwen千问源码解析及介绍LLM大语言模型github
HuggingFace|ModelScope|Paper|️DemoWeChat(微信)|Discord|APIQwen-Cha
- UA 323 Development Economics
后端
UA323ProblemSet1DevelopmentEconomicsDue:March6Thisproblemsetifbasedonthepaper“Thecolonialoriginsofcomparativedevelopment:anempiricalinvestigation”,byAcemoglu,JohnsonandRobinson(2001).Thispaperwasakeyr
- [特殊字符]【CVPR2024新突破】Logit标准化:知识蒸馏中的自适应温度革命[特殊字符]
☞黑心萝卜三条杠☜
论文人工智能论文阅读
文章信息题目:LogitStandardizationinKnowledgeDistillation论文地址:paper代码地址:code年份:2024年发表于CVPR文章主题文章的核心目标是改进知识蒸馏(KD)中的一个关键问题:传统KD方法假设教师和学生模型共享一个全局温度参数(temperature),这导致学生模型需要精确匹配教师模型的logit范围和方差。这种假设不仅限制了学生模型的性能,
- arxiv论文爬虫
plasma-deeplearning
pycharmar爬虫
文章目录readmeArxivInterestingPapersCrawlerDescription:Thetimerangeofthepaperdownloading:Themodeofthedownloading:Therootofthedownloading:Thedomainofthedownloading:Thecustomizedkeywords:Thecustomizedkeywor
- 51-29 CVPR 2024 | BEV-Planner:开环端到端自动驾驶中自车状态是你所需要的一切吗?
深圳季连AIgraphX
aiXpilot智驾大模型1自动驾驶人工智能机器学习智慧城市计算机视觉AIGC
本论文是南京大学、英伟达最新CVPR2024工作。蛮幸运的,该论文提出了很多思考,证明了很多最优Paper在落地上车方面的无效性。咱们对待新方法能否成为自动驾驶的最佳实践要审慎。论文名称:IsEgoStatusAllYouNeedforOpen-LoopEnd-to-EndAutonomousDriving?论文链接:https://arxiv.org/abs/2312.03031.代码链接:ht
- 大模型之二十七-语音识别Whisper实例浅析
shichaog
神经网络&人工智能语音识别whisper人工智能
Whisper简介Whisper是OpenAI于2022年9月开源的一个多语种识别模型,目前支持99种语言,是目前性能最好的开源多语种识别ASR大模型,第一版版使用了68万小时标注好的语料预训练模型,而large-v3的标注数据超过了500万小时,其paper中并没透露使用语料的详细来源,估计是爬了一些版权数据,在Huggingface上提到模型有很强的泛化能力,能够在未经特定训练的情况下处理新的
- KDD2015,Accepted Papers
weixin_34124651
大数据人工智能数据库
AcceptedPapersbySessionResearchSessionRT01:SocialandGraphs1Tuesday10:20am–12:00pm|Level3–BallroomAChair:TanyaBerger-WolfEfficientAlgorithmsforPublic-PrivateSocialNetworksFlavioChierichetti,SapienzaUni
- Java序列化进阶篇
g21121
java序列化
1.transient
类一旦实现了Serializable 接口即被声明为可序列化,然而某些情况下并不是所有的属性都需要序列化,想要人为的去阻止这些属性被序列化,就需要用到transient 关键字。
- escape()、encodeURI()、encodeURIComponent()区别详解
aigo
JavaScriptWeb
原文:http://blog.sina.com.cn/s/blog_4586764e0101khi0.html
JavaScript中有三个可以对字符串编码的函数,分别是: escape,encodeURI,encodeURIComponent,相应3个解码函数:,decodeURI,decodeURIComponent 。
下面简单介绍一下它们的区别
1 escape()函
- ArcgisEngine实现对地图的放大、缩小和平移
Cb123456
添加矢量数据对地图的放大、缩小和平移Engine
ArcgisEngine实现对地图的放大、缩小和平移:
个人觉得是平移,不过网上的都是漫游,通俗的说就是把一个地图对象从一边拉到另一边而已。就看人说话吧.
具体实现:
一、引入命名空间
using ESRI.ArcGIS.Geometry;
using ESRI.ArcGIS.Controls;
二、代码实现.
- Java集合框架概述
天子之骄
Java集合框架概述
集合框架
集合框架可以理解为一个容器,该容器主要指映射(map)、集合(set)、数组(array)和列表(list)等抽象数据结构。
从本质上来说,Java集合框架的主要组成是用来操作对象的接口。不同接口描述不同的数据类型。
简单介绍:
Collection接口是最基本的接口,它定义了List和Set,List又定义了LinkLi
- 旗正4.0页面跳转传值问题
何必如此
javajsp
跳转和成功提示
a) 成功字段非空forward
成功字段非空forward,不会弹出成功字段,为jsp转发,页面能超链接传值,传输变量时需要拼接。接拼接方式list.jsp?test="+strweightUnit+"或list.jsp?test="+weightUnit+&qu
- 全网唯一:移动互联网服务器端开发课程
cocos2d-x小菜
web开发移动开发移动端开发移动互联程序员
移动互联网时代来了! App市场爆发式增长为Web开发程序员带来新一轮机遇,近两年新增创业者,几乎全部选择了移动互联网项目!传统互联网企业中超过98%的门户网站已经或者正在从单一的网站入口转向PC、手机、Pad、智能电视等多端全平台兼容体系。据统计,AppStore中超过85%的App项目都选择了PHP作为后端程
- Log4J通用配置|注意问题 笔记
7454103
DAOapachetomcatlog4jWeb
关于日志的等级 那些去 百度就知道了!
这几天 要搭个新框架 配置了 日志 记下来 !做个备忘!
#这里定义能显示到的最低级别,若定义到INFO级别,则看不到DEBUG级别的信息了~!
log4j.rootLogger=INFO,allLog
# DAO层 log记录到dao.log 控制台 和 总日志文件
log4j.logger.DAO=INFO,dao,C
- SQLServer TCP/IP 连接失败问题 ---SQL Server Configuration Manager
darkranger
sqlcwindowsSQL ServerXP
当你安装完之后,连接数据库的时候可能会发现你的TCP/IP 没有启动..
发现需要启动客户端协议 : TCP/IP
需要打开 SQL Server Configuration Manager...
却发现无法打开 SQL Server Configuration Manager..??
解决方法: C:\WINDOWS\system32目录搜索framedyn.
- [置顶] 做有中国特色的程序员
aijuans
程序员
从出版业说起 网络作品排到靠前的,都不会太难看,一般人不爱看某部作品也是因为不喜欢这个类型,而此人也不会全不喜欢这些网络作品。究其原因,是因为网络作品都是让人先白看的,看的好了才出了头。而纸质作品就不一定了,排行榜靠前的,有好作品,也有垃圾。 许多大牛都是写了博客,后来出了书。这些书也都不次,可能有人让为不好,是因为技术书不像小说,小说在读故事,技术书是在学知识或温习知识,有些技术书读得可
- document.domain 跨域问题
avords
document
document.domain用来得到当前网页的域名。比如在地址栏里输入:javascript:alert(document.domain); //www.315ta.com我们也可以给document.domain属性赋值,不过是有限制的,你只能赋成当前的域名或者基础域名。比如:javascript:alert(document.domain = "315ta.com");
- 关于管理软件的一些思考
houxinyou
管理
工作好多看年了,一直在做管理软件,不知道是我最开始做的时候产生了一些惯性的思维,还是现在接触的管理软件水平有所下降.换过好多年公司,越来越感觉现在的管理软件做的越来越乱.
在我看来,管理软件不论是以前的结构化编程,还是现在的面向对象编程,不管是CS模式,还是BS模式.模块的划分是很重要的.当然,模块的划分有很多种方式.我只是以我自己的划分方式来说一下.
做为管理软件,就像现在讲究MVC这
- NoSQL数据库之Redis数据库管理(String类型和hash类型)
bijian1013
redis数据库NoSQL
一.Redis的数据类型
1.String类型及操作
String是最简单的类型,一个key对应一个value,string类型是二进制安全的。Redis的string可以包含任何数据,比如jpg图片或者序列化的对象。
Set方法:设置key对应的值为string类型的value
- Tomcat 一些技巧
征客丶
javatomcatdos
以下操作都是在windows 环境下
一、Tomcat 启动时配置 JAVA_HOME
在 tomcat 安装目录,bin 文件夹下的 catalina.bat 或 setclasspath.bat 中添加
set JAVA_HOME=JAVA 安装目录
set JRE_HOME=JAVA 安装目录/jre
即可;
二、查看Tomcat 版本
在 tomcat 安装目
- 【Spark七十二】Spark的日志配置
bit1129
spark
在测试Spark Streaming时,大量的日志显示到控制台,影响了Spark Streaming程序代码的输出结果的查看(代码中通过println将输出打印到控制台上),可以通过修改Spark的日志配置的方式,不让Spark Streaming把它的日志显示在console
在Spark的conf目录下,把log4j.properties.template修改为log4j.p
- Haskell版冒泡排序
bookjovi
冒泡排序haskell
面试的时候问的比较多的算法题要么是binary search,要么是冒泡排序,真的不想用写C写冒泡排序了,贴上个Haskell版的,思维简单,代码简单,下次谁要是再要我用C写冒泡排序,直接上个haskell版的,让他自己去理解吧。
sort [] = []
sort [x] = [x]
sort (x:x1:xs)
| x>x1 = x1:so
- java 路径 配置文件读取
bro_feng
java
这几天做一个项目,关于路径做如下笔记,有需要供参考。
取工程内的文件,一般都要用相对路径,这个自然不用多说。
在src统计目录建配置文件目录res,在res中放入配置文件。
读取文件使用方式:
1. MyTest.class.getResourceAsStream("/res/xx.properties")
2. properties.load(MyTest.
- 读《研磨设计模式》-代码笔记-简单工厂模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 个人理解:简单工厂模式就是IOC;
* 客户端要用到某一对象,本来是由客户创建的,现在改成由工厂创建,客户直接取就好了
*/
interface IProduct {
- SVN与JIRA的关联
chenyu19891124
SVN
SVN与JIRA的关联一直都没能装成功,今天凝聚心思花了一天时间整合好了。下面是自己整理的步骤:
一、搭建好SVN环境,尤其是要把SVN的服务注册成系统服务
二、装好JIRA,自己用是jira-4.3.4破解版
三、下载SVN与JIRA的插件并解压,然后拷贝插件包下lib包里的三个jar,放到Atlassian\JIRA 4.3.4\atlassian-jira\WEB-INF\lib下,再
- JWFDv0.96 最新设计思路
comsci
数据结构算法工作企业应用公告
随着工作流技术的发展,工作流产品的应用范围也不断的在扩展,开始进入了像金融行业(我已经看到国有四大商业银行的工作流产品招标公告了),实时生产控制和其它比较重要的工程领域,而
- vi 保存复制内容格式粘贴
daizj
vi粘贴复制保存原格式不变形
vi是linux中非常好用的文本编辑工具,功能强大无比,但对于复制带有缩进格式的内容时,粘贴的时候内容错位很严重,不会按照复制时的格式排版,vi能不能在粘贴时,按复制进的格式进行粘贴呢? 答案是肯定的,vi有一个很强大的命令可以实现此功能 。
在命令模式输入:set paste,则进入paste模式,这样再进行粘贴时
- shell脚本运行时报错误:/bin/bash^M: bad interpreter 的解决办法
dongwei_6688
shell脚本
出现原因:windows上写的脚本,直接拷贝到linux系统上运行由于格式不兼容导致
解决办法:
1. 比如文件名为myshell.sh,vim myshell.sh
2. 执行vim中的命令 : set ff?查看文件格式,如果显示fileformat=dos,证明文件格式有问题
3. 执行vim中的命令 :set fileformat=unix 将文件格式改过来就可以了,然后:w
- 高一上学期难记忆单词
dcj3sjt126com
wordenglish
honest 诚实的;正直的
argue 争论
classical 古典的
hammer 锤子
share 分享;共有
sorrow 悲哀;悲痛
adventure 冒险
error 错误;差错
closet 壁橱;储藏室
pronounce 发音;宣告
repeat 重做;重复
majority 大多数;大半
native 本国的,本地的,本国
- hibernate查询返回DTO对象,DTO封装了多个pojo对象的属性
frankco
POJOhibernate查询DTO
DTO-数据传输对象;pojo-最纯粹的java对象与数据库中的表一一对应。
简单讲:DTO起到业务数据的传递作用,pojo则与持久层数据库打交道。
有时候我们需要查询返回DTO对象,因为DTO
- Partition List
hcx2013
partition
Given a linked list and a value x, partition it such that all nodes less than x come before nodes greater than or equal to x.
You should preserve the original relative order of th
- Spring MVC测试框架详解——客户端测试
jinnianshilongnian
上一篇《Spring MVC测试框架详解——服务端测试》已经介绍了服务端测试,接下来再看看如果测试Rest客户端,对于客户端测试以前经常使用的方法是启动一个内嵌的jetty/tomcat容器,然后发送真实的请求到相应的控制器;这种方式的缺点就是速度慢;自Spring 3.2开始提供了对RestTemplate的模拟服务器测试方式,也就是说使用RestTemplate测试时无须启动服务器,而是模拟一
- 关于推荐个人观点
liyonghui160com
推荐系统关于推荐个人观点
回想起来,我也做推荐了3年多了,最近公司做了调整招聘了很多算法工程师,以为需要多么高大上的算法才能搭建起来的,从实践中走过来,我只想说【不是这样的】
第一次接触推荐系统是在四年前入职的时候,那时候,机器学习和大数据都是没有的概念,什么大数据处理开源软件根本不存在,我们用多台计算机web程序记录用户行为,用.net的w
- 不间断旋转的动画
pangyulei
动画
CABasicAnimation* rotationAnimation;
rotationAnimation = [CABasicAnimation animationWithKeyPath:@"transform.rotation.z"];
rotationAnimation.toValue = [NSNumber numberWithFloat: M
- 自定义annotation
sha1064616837
javaenumannotationreflect
对象有的属性在页面上可编辑,有的属性在页面只可读,以前都是我们在页面上写死的,时间一久有时候会混乱,此处通过自定义annotation在类属性中定义。越来越发现Java的Annotation真心很强大,可以帮我们省去很多代码,让代码看上去简洁。
下面这个例子 主要用到了
1.自定义annotation:@interface,以及几个配合着自定义注解使用的几个注解
2.简单的反射
3.枚举
- Spring 源码
up2pu
spring
1.Spring源代码
https://github.com/SpringSource/spring-framework/branches/3.2.x
注:兼容svn检出
2.运行脚本
import-into-eclipse.bat
注:需要设置JAVA_HOME为jdk 1.7
build.gradle
compileJava {
sourceCompatibilit
- 利用word分词来计算文本相似度
yangshangchuan
wordword分词文本相似度余弦相似度简单共有词
word分词提供了多种文本相似度计算方式:
方式一:余弦相似度,通过计算两个向量的夹角余弦值来评估他们的相似度
实现类:org.apdplat.word.analysis.CosineTextSimilarity
用法如下:
String text1 = "我爱购物";
String text2 = "我爱读书";
String text3 =