人体姿态估计2014-2017

一、常用数据集Pose Estimation/keypoint常用数据集1. Posetrack:https://posetrack.net/> 500 video sequences> 20K frames> 150K body pose annotations3 challenges2. LSP:http://sam.johnson.io/research/lsp.html样本数:2K关节点个数:14全身,单人3. FLIC:https://bensapp.github.io/flic-dataset.html样本数:2W关节点个数:9全身,单人4. MPII:http://human-pose.mpi-inf.mpg.de/样本数:25K关节点个数:16全身,单人/多人,40K people,410 human activities5. MSCOCO:http://cocodataset.org/#download样本数:>= 30W关节点个数:18全身,多人,keypoints on 10W people6. AI Challenge:https://challenger.ai/competition/keypoint/subject样本数:21W Training, 3W Validation, 3W Testing关节点个数:14全身,多人,38W people二、主流方法2D Pose estimation主要面临的困难:遮挡、复杂背景、光照、真实世界的复杂姿态、人的尺度不一、拍摄角度不固定等。单人姿态估计传统方法:基于Pictorial Structures, DPM▪ 基于深度学习的算法包括直接回归坐标(Deep Pose)和通过热力图回归坐标(CPM, Hourlgass)目前单人姿态估计,主流算法是基于Hourlgass各种更改结构的算法。多人姿态估计二维图像姿态估计基于CNN的多人姿态估计方法,通常有2个思路(Bottom-Up Approaches和Top-Down Approaches):(1)Top-Down Approaches,即two-step framework,就是先进行行人检测,得到边界框,然后在每一个边界框中检测人体关键点,连接成一个人形,缺点就是受检测框的影响太大,漏检,误检,IOU大小等都会对结果有影响,算法包括RMPE、Mask-RCNN 等。(2)Bottom-Up Approaches,即part-based framework,就是先对整个图片进行每个人体关键点部件的检测,再将检测到的部件拼接成一个人形,缺点就是会将不同人的不同部位按一个人进行拼接,代表方法就是openpose、DeepCut 、PAFs。tricks采用多尺度,多分辨率的网络结构采用基于Residual Block来构建网络扩大感受野(large kernel, dilation convolution, Spatial Transformer Network、hourglass module)预处理很重要(将人放在输入图片的中心,人的尺度尽量归一化到统一尺度,对图片进行翻转、旋转)后处理同样重要 三、Single PersonPose estimation2014----Articulated Pose Estimation by a Graphical Model with ImageDependent Pairwise Relations2014----DeepPose_Human Pose Estimation via Deep Neural Networks2014----Joint Training of a Convolutional Network and a Graphical Model forHuman Pose Estimation2014----Learning Human Pose Estimation Features with Convolutional Networks2014----MoDeep_ A Deep Learning Framework Using Motion Features for HumanPose Estimation2015----Efficient Object Localization Using Convolutional Networks2015----Human Pose Estimation with Iterative Error2015----Pose-based CNN Features for Action Recognition2016----Advancing Hand Gesture Recognition with High Resolution ElectricalImpedance Tomography2016----Chained Predictions Using Convolutional Neural Networks2016----CPM----Convolutional Pose Machines2016----CVPR-2016----End-to-End Learning of Deformable Mixture of Parts andDeep Convolutional Neural Networks for Human Pose Estimation2016----Deep Learning of Local RGB-D Patches for 3D Object Detection and 6DPose Estimation2016----PAFs----Realtime Multi-Person 2D Pose Estimation using PartAffinity Fields2016----Stacked hourglass----StackedHourglass Networks for Human Pose Estimation2016----Structured Feature Learning for Pose Estimation2017----Adversarial PoseNet_ A Structure-aware Convolutional Network forHuman pose estimation2017----CVPR2017 oral----Realtime Multi-Person 2D Pose Estimation usingPart Affinity Fields2017----Learning Feature Pyramids for Human Pose Estimation2017----Multi-Context_Attention_for_Human_Pose_Estimation2017----Self Adversarial Training for Human Pose Estimation 四、Multi-PersonPose estimation2016----AssociativeEmbedding_End-to-End Learning for Joint Detection and Grouping2016----DeepCut----Joint Subset Partition and Labeling for Multi PersonPose Estimation2016----DeepCut----Joint Subset Partition and Labeling for Multi PersonPose Estimation_poster2016----DeeperCut----DeeperCut A Deeper, Stronger, and Faster Multi-PersonPose Estimation Model2017----G-RMI----Towards Accurate Multi-person Pose Estimation in the Wild2017----RMPE_ Regional Multi-PersonPose Estimation    这篇是上海交大卢策吾教授项目组的论文,基于Top-Down Approaches。    论文的Motivation就是解决定位误差和定位框冗余检测这两个问题。引入Google提出的Spatial Transformer Networks,可以使得传统的卷积带有了裁剪、平移、缩放、旋转等特性。    论文中一个实验:Upper Bound of Our Framework,就是论文直接使用ground truth的人体边界框,在验证数据集取得84.2 mAP成绩,说明算法不仅需要提供人体边界框,第二阶段的单人姿态估计性能也需要提高。    脑洞:可以参考MSRA的deformable convolutional network,应该有新的paper。2017----COCO2017 Keypointswinner----Cascaded Pyramid Network for Multi-Person Pose Estimation2017----PyraNet----Learning Feature Pyramids for Human Pose Estimation
--------------------- 
作者:buling5143 
来源:CSDN 
原文:https://blog.csdn.net/buling5143/article/details/79466588 
版权声明:本文为博主原创文章,转载请附上博文链接!

你可能感兴趣的:(人体姿态估计2014-2017)