manachar算法学习笔记

manachar算法用来处理字符串的最长回文子串的算法,其核心就是预处理len数组.

假设原串是s[0...n-1],len[i]表示以s[i]为回文中心的最长回文串的右下标到i的长度,

然后递推瞎搞.


因为算法本身比较简单网上烂大街,主要还是想了一下复杂度.

容易发现Max指针最多扩展到n,而复杂度主要在于while循环,每次都会增加Max指

针或者跳出while循环,所以复杂度最多就是O(n+chang(Max))=O(n).


HDU 3068:点击打开链接

模板题

#include 
using namespace std;
#define maxn 111111

int len[maxn<<1];
char a[maxn];

int manachar (char *p) {
    char s[maxn<<1];//构造新串
    int n = strlen (p), l = 0;
    s[l++] = '@';
    s[l++] = '#';
    for (int i = 0; i < n; i++) {
        s[l++] = p[i];
        s[l++] = '#';
    }
    s[l++] = '~'; s[l] = 0;
    //cout << s << endl;

    int Max = 0, pos = 0, ans = 0;
    for (int i = 1; i < l; i++) {
        if (Max > i) {
            len[i] = min (len[2*pos-i], Max-i);
        }
        else
            len[i] = 1;
        while (s[i+len[i]] == s[i-len[i]])
            len[i]++;
        ans = max (ans, len[i]);
        if (len[i]+i > Max) {
            Max = len[i]+i;
            pos = i;
        }
    }
    return ans-1;
}

int main () {
    while (scanf ("%s", a) == 1) printf ("%d\n", manachar (a));
    return 0;
}

POJ 3974:点击打开链接

#include 
#include 
#include 
#include 
#include 
using namespace std;
#define maxn 2211111

int len[maxn];
char s[maxn];
char a[maxn];

int Manachar (char *p) {
    int n = strlen (p), l = 0;
    s[l++] = '@';
    s[l++] = '#';
    for (int i = 0; i < n; i++) {
        s[l++] = p[i];
        s[l++] = '#';
    }
    s[l] = 0;

    int Max = 0, pos = 0, ans = 0;
    for (int i = 1; i < l; i++) {
        if (Max > i) {
            len[i] = min (len[2*pos-i], Max-i);
        }
        else
            len[i] = 1;
        while (s[i+len[i]] == s[i-len[i]])
            len[i]++;
        ans = max (ans, len[i]);
        if (len[i]+i > Max) {
            Max = len[i]+i;
            pos = i;
        }
    }
    return ans-1;
}

int main () {
    int kase = 0;
    while (scanf ("%s", a) == 1) {
        if (a[0] == 'E')
            break;
        printf ("Case %d: %d\n", ++kase, Manachar (a));
    }
    return 0;
}


你可能感兴趣的:(manachar)