- Tensorflow 实现 Word2Vec
王小鸟_wpcool
今天学习了一下《Tensorflow实战》这本书中第7章内容,利用tensorflow实现word2vec。其实书中内容就是Tensorflow教程中的例子,现在挣钱真容易。附链接https://github.com/tensorflow/tensorflow/blob/r0.12/tensorflow/examples/tutorials/word2vec/word2vec_basic.py代码
- 深度学习的发展历程
SnowScholar
深度学习机器学习深度学习神经网络发展历程
参考书籍《Tensorflow实战Google深度学习框架》郑泽宇等要想学习深度学习这门技术,那么有必要对其发展作一定程度的了解。深度学习其实不是一门新技术,目前大家熟悉的“深度学习”基本上是深度神经网络的一个代名词,神经网络技术可追溯到1943年。深度学习之所以被人们认为是新技术,那是因为它在21世纪初并不流行。神经网络的发展不是一番风顺,它的发展经历了三个起落,也可分为三个阶段。第一阶段:受到
- Tensorflow实战深度学习笔记一
独立开发者Lau
人类直观能力----人工智能(自然语言理解、图像识别、语音识别等)。经验----机器学习。训练----特征相关度。特征提取深度学习---自动地将简单的特征组合成更加复杂的特征,并使用这些复杂特征解决问题。深度学习--------不等于模仿人类大脑。
- 4.3 TensorFlow实战三(3):MNIST手写数字识别问题-多层神经网络模型
大白猿学习笔记
一、多层神经网络解决MNIST问题1.构建多层神经网络模型在4.2节我们使用了单层神经网络来解决MNIST手写数字识别问题,提高了识别性能。很容易想到,能否增加隐藏层数量来进一步提高模型预测的的准确率。这一节我们尝试构建两层神经网络模型。代码方面,只需要修改隐藏层构建到输出层构建的一部分即可#构建多隐藏层(2层)H1_NN=256#第1隐藏层神经元的数量w1=tf.Variable(tf.rand
- TensorFlow实战教程(三十五)-VS Code配置Python编程和Keras环境及手写数字识别(基础篇)
张志翔的博客
TensorFlow实战教程pythontensorflowkeras
从本专栏开始,作者正式研究Python深度学习、神经网络及人工智能相关知识。前一篇文章利用Keras构建无监督学习Autoencoder模型并实现聚类分析。这篇文章将介绍基础知识,因为很多读者咨询我如何用VSCode配置Keras深度学习环境,并对比常用的深度学习框架,最后普及手写数字识别案例。基础性文章,希望对您有所帮助一.VSCode安装Python在介绍代码之前,先讲解Python常用的开发
- TensorFlow实战教程(二十五)-基于BiLSTM-CRF的医学命名实体识别研究(下)模型构建
张志翔的博客
TensorFlow实战教程tensorflow人工智能python
这篇文章写得很冗余,但是我相信你如果真的看完,并且按照我的代码和逻辑进行分析,对您以后的数据预处理和命名实体识别都有帮助,只有真正对这些复杂的文本进行NLP处理后,您才能适应更多的真实环境,坚持!毕竟我写的时候也看了20多小时的视频,又写了20多个小时,别抱怨,加油~上一篇文章处理后的数据格式如下图所示,将一个个句子处理成了包含六元组的CSV文件,这篇文章将介绍BiLSTM-CRF模型搭建及训练、
- TensorFlow实战教程(十九)-Keras搭建循环神经网络分类案例及RNN原理详解
张志翔的博客
TensorFlow实战教程tensorflowkerasrnn
从本专栏开始,作者正式研究Python深度学习、神经网络及人工智能相关知识。前一篇文章分享了卷积神经网络CNN原理,并通过Keras编写CNN实现了MNIST分类学习案例。这篇文章将详细讲解循环神经网络RNN的原理知识,并采用Keras实现手写数字识别的RNN分类案例及可视化呈现。基础性文章,希望对您有所帮助!一.循环神经网络在编写代码之前,我们需要介绍什么是RNN,RNN是怎样运行的以及RNN的
- TensorFlow实战教程(二十四)-基于BiLSTM-CRF的医学命名实体识别研究(上)数据预处理
张志翔的博客
TensorFlow实战教程tensorflow人工智能python
这篇文章写得很冗余,但是我相信你如果真的看完,并且按照我的代码和逻辑进行分析,对您以后的数据预处理和命名实体识别都有帮助,只有真正对这些复杂的文本进行NLP处理后,您才能适应更多的真实环境,坚持!毕竟我写的时候也看了20多小时的视频,又写了20多个小时,别抱怨,加油~一.什么是命名实体识别实体是知识图谱最重要的组成,命名实体识别(NamedEntityRecognition,NER)对于知识图谱构
- TensorFlow实战教程(二十八)-Keras实现BiLSTM微博情感分类和LDA主题挖掘分析
张志翔的博客
TensorFlow实战教程tensorflowkeras分类
从本专栏开始,作者正式研究Python深度学习、神经网络及人工智能相关知识。前一篇文章通过Keras深度学习构建CNN模型识别阿拉伯手写文字图像,一篇非常经典的图像分类文字。这篇文章将结合文本挖掘介绍微博情感分类知识,包括数据预处理、机器学习和深度学习的情感分类,后续结合LDA进行主题挖掘。基础性文章,希望对您有所帮助!一.BiLSTM模型LSTM的全称是LongShort-TermMemory,
- TensorFlow实战教程(一)-TensorFlow环境部署
张志翔的博客
TensorFlow实战教程tensorflow人工智能python
从本篇文章开始,作者正式开始研究Python深度学习、神经网络及人工智能相关知识。第一篇文章主要讲解神经网络基础概念,同时讲解TensorFlow2.0的安装过程及基础用法,主要结合作者之前的博客和"莫烦大神"的视频介绍,后面随着深入会讲解具体的项目及应用。基础性文章,希望对您有所帮助,如果文章中存在错误或不足之处,还请海涵~同时自己也是人工智能的菜鸟,希望大家能与我在这一笔一划的博客中成长起来。
- TensorFlow实战教程(十七)-Keras搭建分类神经网络及MNIST数字图像案例分析
张志翔的博客
TensorFlow实战教程tensorflowkeras分类
从本专栏开始,作者正式研究Python深度学习、神经网络及人工智能相关知识。前一篇文章详细讲解了Keras环境搭建、入门基础及回归神经网络案例。本篇文章将通过Keras实现分类学习,以MNIST数字图片为例进行讲解。基础性文章,希望对您有所帮助!一.什么是分类学习1.Classification我们之前文章解决的都是回归问题,它预测的是一个连续分布的值,例如房屋的价格、汽车的速度、Pizza的价格
- [TensorFlow 学习笔记-03]TensorFlow简介
caicaiatnbu
TensorFlow学习笔记深度学习TensorFlow
[版权说明]TensorFlow学习笔记参考:李嘉璇著TensorFlow技术解析与实战黄文坚唐源著TensorFlow实战郑泽宇顾思宇著TensorFlow实战Google深度学习框架乐毅王斌著深度学习-Caffe之经典模型详解与实战TensorFlow中文社区http://www.tensorfly.cn/极客学院著TensorFlow官方文档中文版TensorFlow官方文档英文版以及各位大
- 免费教材丨第55期:Python机器学习实践指南、Tensorflow 实战Google深度学习框架
人工智能爱好者俱乐部
小编说时间过的好快啊,小伙伴们是不是都快进入寒假啦?但是学习可不要落下哦!本期教材本期为大家发放的教材为:《Python机器学习实践指南》、《Tensorflow实战Google深度学习框架》两本书,大家可以根据自己的需要阅读哦!《Python机器学习实践指南》内容简介机器学习是近年来渐趋热门的一个领域,同时Python语言经过一段时间的发展也已逐渐成为主流的编程语言之一。本书结合了机器学习和Py
- Tensorflow入门(七)——CNN经典模型:LeNet
陈陈陈Chann
#Tensorflow卷积神经网络tensorflow深度学习机器学习
上一节《Tensorflow入门(六)——初识卷积神经网络(CNN)》实战篇《Tensorflow实战(二)——MNIST(CNN实现)》原文链接:https://my.oschina.net/u/876354/blog/1632862本文在原文基础上进行细微的修改和完善。文章目录1.CNN的三个特点1.1局部感知1.2参数(权值)共享1.3池化2.LeNet52.1C1层(卷积层):6@28×2
- 深度之眼-机器学习总结
任嘉平生愿
为期三个月的西瓜书机器学习训练营结束,昨天听完了毕业典礼。我做了如下总结:校长讲话:定目标短时间自己的小团队闭环开环闭环----学习小部分就应用时间和努力的堆积打比赛应用人工智能的课题和方向资料tensorflow实战google深度学习框架和强者学习才会遇强则强博士讲话:1.坚持写博客2.github3.多练习4.英文原版的文章高级课程你目前的弱点是什么5.多读论文
- 机器学习(19)---神经网络详解
冒冒菜菜
机器学习从0到1机器学习人工智能神经网络笔记
神经网络一、神经网络概述1.1神经元模型1.2激活函数二、感知机2.1概述2.2实现逻辑运算2.3多层感知机三、神经网络3.1工作原理3.2前向传播3.3Tensorflow实战演示3.3.1导入数据集查看3.3.2数据预处理3.3.3建立模型3.3.4评估模型四、反向传播五、例题5.1题15.2题2一、神经网络概述1.1神经元模型 1.这里采用最广泛一种定义:神经网络是由适应性的简单单元组成的广
- TensorFlow实战(五)Deep Dream(计算机生成梦幻图像)——理解深度神经网络结构及应用
young974
一、疑问卷积层究竟学到了什么内容?同一卷积层中不同通道学习到的内容有什么区别?浅层的卷积和深层的卷积学习到的内容有什么区别?二、DeepDream技术原理DeepDream生成梦幻图像1.利用CNN进行图像分类:CNN的图像分类2.DeepDream使用梯度上升的方法可视化网络每一层的特征,即用一张噪声图像输入网络,反向更新的时候不更新网络权重,而是更新初始图像的像素值,(这里卷积神经网络是固定的
- 机器学习实战:Python基于NN神经网络进行分类(十一)
Bioinfo Guy
机器学习Python机器学习python神经网络
文章目录1前言1.1神经网络的介绍1.2神经网络的应用2.Tensorflow实战演示2.1导入函数2.2导入数据2.3数据预处理2.4建立神经网络2.5训练模型2.6评估模型2.7预测3.讨论1前言神经网络(Neuralnetwork,NN)机器学习是一种基于人工神经网络的机器学习方法,它模拟了人类神经系统的工作原理。神经网络是由多个人工神经元组成的网络结构,每个神经元都接收输入信号、进行计算并
- 【Manning2022新书】TensorFlow实战
数据派THU
神经网络机器学习人工智能深度学习java
来源:专知本文为书籍介绍,建议阅读5分钟TensorFlowinAction教你使用TensorFlow2构建、训练和部署深度学习模型。TensorFlowinAction教你使用TensorFlow2构建、训练和部署深度学习模型。在本实用教程中,您将在创建可用于生产的应用(如法语-英语翻译程序和可以编写小说的神经网络)时,亲自构建可重用的技能。您将欣赏从DL基础知识到NLP、图像处理和MLOps
- 深度学习02-神经网络(MLP多层感知器)
liaomin416100569
深度学习神经网络人工智能
文章目录神经网络简介学习路径分类多层感知器(MLP)神经网络认识两层神经网络输入层从输入层到隐藏层从隐藏层到输出层激活层输出的正规化如何衡量输出的好坏反向传播与参数优化过拟合BP算法推导定义算法讲解前向传播反向传播具体实例tensorflow实战加载数据集数据预处理one-host编码keras.utils.to_categorical()构造多层感知器模型tf.keras.Sequentialk
- TensorFlow实战--使用神经网络来实现对鸢尾花数据集的分类
C君莫笑
人生苦短-我用Pythontensorflowpython机器学习
利用单层神经网络实现对鸢尾花数据集的分类使用没有隐含层的单层前馈型神经网络来实现对鸢尾花的分类importpandasaspdimportnumpyasnpimporttensorflowastftf.enable_eager_execution()#关键importmatplotlib.pyplotaspltplt.rcParams['font.sans-serif']="SimHei"plt.
- 线性回归详解及Tensorflow实战
lmn_
AI人工智能AI线性回归算法
0x01线性回归概述线性回归()是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法其表达形式为y=w'x+e,e为误差服从均值为0的正态分布线性回归可能是统计学和机器学习中最著名和最容易理解的算法之一在统计学中,线性回归是一种对标量响应和一个或多个解释变量(也称为因变量和自变量)之间的关系进行建模的线性方法一个解释变量的情况称为简单线性回归(simplelin
- 机器学习笔记(十三):TensorFlow实战五(经典卷积神经网络: LeNet -5 )
LiAnG小炜
机器学习笔记
1-引言之前我们介绍了一下卷积神经网络的基本结构——卷积层和池化层。通过这两个结构我们可以任意的构建各种各样的卷积神经网络模型,不同结构的网络模型也有不同的效果。但是怎样的神经网络模型具有比较好的效果呢?下图展示了CNN的发展历程。经过人们不断的尝试,诞生了许多有有着里程碑式意义的CNN模型。因此我们接下来会学习这些非常经典的卷积神经网络LeNet-5AlexNetVGGInceptionResN
- Tensorflow-图像处理视频课程-唐宇迪-专题视频课程
迪哥有点愁了
视频教程图像处理深度学习tensorflow机器学习人工智能
Tensorflow-图像处理视频课程—491人已学习课程介绍课程以Tensorflow作为核心武器,基于图像处理热点话题进行案例实战。选择当下热门模型,使用真实数据集进行实战演示,通俗讲解整个算法模型并使用tensorflow进行实战,详解其中的原理与代码实现。课程收益掌握如何使用Tensorflow进行图像处理并使用tensorflow实战。讲师介绍唐宇迪更多讲师课程计算机博士,专注于机器学习
- 深度学习之TensorFlow实战2
Mr Robot
深度学习TensorFlow人工智能人工智能深度学习tensorflowpython
TensorFlow基本概念图(Graph):图描述了计算的过程,TensorFlow使用图来表示计算任务。张量(Tensor):TensorFlow使用tensor表示数据。每个Tensor是一个类型化的多维数组。操作(op):图中的节点被称为op(opearation的缩写),一个op获得0个或多个Tensor,执行计算,产生0个或多个Tensor。会话(Session):图必须在称之为“会话
- Day1 #100DaysofMLCoding#
MWhite
2018-8-6个人前置条件:已经将《统计学习方法》《机器学习实战》一刷80%西瓜书一刷50%,tensorflow实战一刷70%kaggle上参与过titanic(Top6%)和数字识别(Top12%)比较了解pandas,numpy,matplotlib,seaborn,tensorflow,sklearn今日计划复习数学模型基础看深度学习博客——太长了悠闲时看视觉CV博客一colah个人博客
- TensorFlow实战(四)MNIST手写数字识别进阶——单、多隐层全连接网络
young974
上节手写数字识别入门用的是单个神经元来处理分类问题,准确率达0.8619。这一节做一些改进,以单隐含层全连接网络为例,可使准确率达0.9744。后进一步调整隐含层数测试发现,加入不同层数隐含层达到的准确率,3层>单层>2层。说明神经网络的层数未必越多越好。单个神经元模型全连接单隐藏层神经网络导入数据集importtensorflowastfimporttensorflow.examples.tut
- TensorFlow实战:LSTM的结构与cell中的参数
星之所望
python
一些参数训练的话一般一批一批训练,即让batch_size个句子同时训练;每个句子的单词个数为num_steps,由于句子长度就是时间长度,因此用num_steps代表句子长度。在NLP问题中,我们用词向量表示一个单词(一个数基本不能表示一个词,大家应该都知道的吧,可以去了解下词向量),我们设定词向量的长度为wordvec_size。LSTM结构中是一个神经网络,即下图的结构就是一个LSTM单元,
- 图像风格快速迁移tensorflow实战
sk千空
一个代码篮子1024程序员节tensorflowpython机器学习深度学习
引言需要解决的问题是:利用tensorflow的快速风格迁移功能,把一张qq的logo图片转换成《星空》油画的风格,并打印输出。如图所示,最右边图像是输入结果,左边两图是输入:一、操作步骤通过两天的学习,修了许多bug,踩了不少坑,终于把实验做成了。现在试着阐述相关的原理和具体操作步骤。这里我把整个实验过程分为4大部分,每个部分都会给出详细的操作步骤。A.软件的安装和配置B.风格迁移代码的理解和操
- 机器学习笔记(十二):TensorFlow实战四(图像识别与卷积神经网络)
LiAnG小炜
机器学习笔记深度学习图像识别卷积神经网络人工智能
1-卷积神经网络常用结构1.1-卷积层我们先来介绍卷积层的结构以及其前向传播的算法。一个卷积层模块,包含以下几个子模块:使用0扩充边界(padding)卷积窗口过滤器(filter)前向卷积反向卷积(可选)1.1.2-边界填充边界填充将会在图像边界周围添加值为0的像素点,如下图所示:使用0填充边界有以下好处:卷积了上一层之后的CONV层,没有缩小高度和宽度,这对建立更深的网络非常重要,否则在更深层
- Enum 枚举
120153216
enum枚举
原文地址:http://www.cnblogs.com/Kavlez/p/4268601.html Enumeration
于Java 1.5增加的enum type...enum type是由一组固定的常量组成的类型,比如四个季节、扑克花色。在出现enum type之前,通常用一组int常量表示枚举类型。比如这样:
public static final int APPLE_FUJI = 0
- Java8简明教程
bijian1013
javajdk1.8
Java 8已于2014年3月18日正式发布了,新版本带来了诸多改进,包括Lambda表达式、Streams、日期时间API等等。本文就带你领略Java 8的全新特性。
一.允许在接口中有默认方法实现
Java 8 允许我们使用default关键字,为接口声明添
- Oracle表维护 快速备份删除数据
cuisuqiang
oracle索引快速备份删除
我知道oracle表分区,不过那是数据库设计阶段的事情,目前是远水解不了近渴。
当前的数据库表,要求保留一个月数据,且表存在大量录入更新,不存在程序删除。
为了解决频繁查询和更新的瓶颈,我在oracle内根据需要创建了索引。但是随着数据量的增加,一个半月数据就要超千万,此时就算有索引,对高并发的查询和更新来说,让然有所拖累。
为了解决这个问题,我一般一个月会进行一次数据库维护,主要工作就是备
- java多态内存分析
麦田的设计者
java内存分析多态原理接口和抽象类
“ 时针如果可以回头,熟悉那张脸,重温嬉戏这乐园,墙壁的松脱涂鸦已经褪色才明白存在的价值归于记忆。街角小店尚存在吗?这大时代会不会牵挂,过去现在花开怎么会等待。
但有种意外不管痛不痛都有伤害,光阴远远离开,那笑声徘徊与脑海。但这一秒可笑不再可爱,当天心
- Xshell实现Windows上传文件到Linux主机
被触发
windows
经常有这样的需求,我们在Windows下载的软件包,如何上传到远程Linux主机上?还有如何从Linux主机下载软件包到Windows下;之前我的做法现在看来好笨好繁琐,不过也达到了目的,笨人有本方法嘛;
我是怎么操作的:
1、打开一台本地Linux虚拟机,使用mount 挂载Windows的共享文件夹到Linux上,然后拷贝数据到Linux虚拟机里面;(经常第一步都不顺利,无法挂载Windo
- 类的加载ClassLoader
肆无忌惮_
ClassLoader
类加载器ClassLoader是用来将java的类加载到虚拟机中,类加载器负责读取class字节文件到内存中,并将它转为Class的对象(类对象),通过此实例的 newInstance()方法就可以创建出该类的一个对象。
其中重要的方法为findClass(String name)。
如何写一个自己的类加载器呢?
首先写一个便于测试的类Student
- html5写的玫瑰花
知了ing
html5
<html>
<head>
<title>I Love You!</title>
<meta charset="utf-8" />
</head>
<body>
<canvas id="c"></canvas>
- google的ConcurrentLinkedHashmap源代码解析
矮蛋蛋
LRU
原文地址:
http://janeky.iteye.com/blog/1534352
简述
ConcurrentLinkedHashMap 是google团队提供的一个容器。它有什么用呢?其实它本身是对
ConcurrentHashMap的封装,可以用来实现一个基于LRU策略的缓存。详细介绍可以参见
http://code.google.com/p/concurrentlinke
- webservice获取访问服务的ip地址
alleni123
webservice
1. 首先注入javax.xml.ws.WebServiceContext,
@Resource
private WebServiceContext context;
2. 在方法中获取交换请求的对象。
javax.xml.ws.handler.MessageContext mc=context.getMessageContext();
com.sun.net.http
- 菜鸟的java基础提升之道——————>是否值得拥有
百合不是茶
1,c++,java是面向对象编程的语言,将万事万物都看成是对象;java做一件事情关注的是人物,java是c++继承过来的,java没有直接更改地址的权限但是可以通过引用来传值操作地址,java也没有c++中繁琐的操作,java以其优越的可移植型,平台的安全型,高效性赢得了广泛的认同,全世界越来越多的人去学习java,我也是其中的一员
java组成:
- 通过修改Linux服务自动启动指定应用程序
bijian1013
linux
Linux中修改系统服务的命令是chkconfig (check config),命令的详细解释如下: chkconfig
功能说明:检查,设置系统的各种服务。
语 法:chkconfig [ -- add][ -- del][ -- list][系统服务] 或 chkconfig [ -- level <</SPAN>
- spring拦截器的一个简单实例
bijian1013
javaspring拦截器Interceptor
Purview接口
package aop;
public interface Purview {
void checkLogin();
}
Purview接口的实现类PurviesImpl.java
package aop;
public class PurviewImpl implements Purview {
public void check
- [Velocity二]自定义Velocity指令
bit1129
velocity
什么是Velocity指令
在Velocity中,#set,#if, #foreach, #elseif, #parse等,以#开头的称之为指令,Velocity内置的这些指令可以用来做赋值,条件判断,循环控制等脚本语言必备的逻辑控制等语句,Velocity的指令是可扩展的,即用户可以根据实际的需要自定义Velocity指令
自定义指令(Directive)的一般步骤
&nbs
- 【Hive十】Programming Hive学习笔记
bit1129
programming
第二章 Getting Started
1.Hive最大的局限性是什么?一是不支持行级别的增删改(insert, delete, update)二是查询性能非常差(基于Hadoop MapReduce),不适合延迟小的交互式任务三是不支持事务2. Hive MetaStore是干什么的?Hive persists table schemas and other system metadata.
- nginx有选择性进行限制
ronin47
nginx 动静 限制
http {
limit_conn_zone $binary_remote_addr zone=addr:10m;
limit_req_zone $binary_remote_addr zone=one:10m rate=5r/s;...
server {...
location ~.*\.(gif|png|css|js|icon)$ {
- java-4.-在二元树中找出和为某一值的所有路径 .
bylijinnan
java
/*
* 0.use a TwoWayLinkedList to store the path.when the node can't be path,you should/can delete it.
* 1.curSum==exceptedSum:if the lastNode is TreeNode,printPath();delete the node otherwise
- Netty学习笔记
bylijinnan
javanetty
本文是阅读以下两篇文章时:
http://seeallhearall.blogspot.com/2012/05/netty-tutorial-part-1-introduction-to.html
http://seeallhearall.blogspot.com/2012/06/netty-tutorial-part-15-on-channel.html
我的一些笔记
===
- js获取项目路径
cngolon
js
//js获取项目根路径,如: http://localhost:8083/uimcardprj
function getRootPath(){
//获取当前网址,如: http://localhost:8083/uimcardprj/share/meun.jsp
var curWwwPath=window.document.locati
- oracle 的性能优化
cuishikuan
oracleSQL Server
在网上搜索了一些Oracle性能优化的文章,为了更加深层次的巩固[边写边记],也为了可以随时查看,所以发表这篇文章。
1.ORACLE采用自下而上的顺序解析WHERE子句,根据这个原理,表之间的连接必须写在其他WHERE条件之前,那些可以过滤掉最大数量记录的条件必须写在WHERE子句的末尾。(这点本人曾经做过实例验证过,的确如此哦!
- Shell变量和数组使用详解
daizj
linuxshell变量数组
Shell 变量
定义变量时,变量名不加美元符号($,PHP语言中变量需要),如:
your_name="w3cschool.cc"
注意,变量名和等号之间不能有空格,这可能和你熟悉的所有编程语言都不一样。同时,变量名的命名须遵循如下规则:
首个字符必须为字母(a-z,A-Z)。
中间不能有空格,可以使用下划线(_)。
不能使用标点符号。
不能使用ba
- 编程中的一些概念,KISS、DRY、MVC、OOP、REST
dcj3sjt126com
REST
KISS、DRY、MVC、OOP、REST (1)KISS是指Keep It Simple,Stupid(摘自wikipedia),指设计时要坚持简约原则,避免不必要的复杂化。 (2)DRY是指Don't Repeat Yourself(摘自wikipedia),特指在程序设计以及计算中避免重复代码,因为这样会降低灵活性、简洁性,并且可能导致代码之间的矛盾。 (3)OOP 即Object-Orie
- [Android]设置Activity为全屏显示的两种方法
dcj3sjt126com
Activity
1. 方法1:AndroidManifest.xml 里,Activity的 android:theme 指定为" @android:style/Theme.NoTitleBar.Fullscreen" 示例: <application
- solrcloud 部署方式比较
eksliang
solrCloud
solrcloud 的部署其实有两种方式可选,那么我们在实践开发中应该怎样选择呢? 第一种:当启动solr服务器时,内嵌的启动一个Zookeeper服务器,然后将这些内嵌的Zookeeper服务器组成一个集群。 第二种:将Zookeeper服务器独立的配置一个集群,然后将solr交给Zookeeper进行管理
谈谈第一种:每启动一个solr服务器就内嵌的启动一个Zoo
- Java synchronized关键字详解
gqdy365
synchronized
转载自:http://www.cnblogs.com/mengdd/archive/2013/02/16/2913806.html
多线程的同步机制对资源进行加锁,使得在同一个时间,只有一个线程可以进行操作,同步用以解决多个线程同时访问时可能出现的问题。
同步机制可以使用synchronized关键字实现。
当synchronized关键字修饰一个方法的时候,该方法叫做同步方法。
当s
- js实现登录时记住用户名
hw1287789687
记住我记住密码cookie记住用户名记住账号
在页面中如何获取cookie值呢?
如果是JSP的话,可以通过servlet的对象request 获取cookie,可以
参考:http://hw1287789687.iteye.com/blog/2050040
如果要求登录页面是html呢?html页面中如何获取cookie呢?
直接上代码了
页面:loginInput.html
代码:
<!DOCTYPE html PUB
- 开发者必备的 Chrome 扩展
justjavac
chrome
Firebug:不用多介绍了吧https://chrome.google.com/webstore/detail/bmagokdooijbeehmkpknfglimnifench
ChromeSnifferPlus:Chrome 探测器,可以探测正在使用的开源软件或者 js 类库https://chrome.google.com/webstore/detail/chrome-sniffer-pl
- 算法机试题
李亚飞
java算法机试题
在面试机试时,遇到一个算法题,当时没能写出来,最后是同学帮忙解决的。
这道题大致意思是:输入一个数,比如4,。这时会输出:
&n
- 正确配置Linux系统ulimit值
字符串
ulimit
在Linux下面部 署应用的时候,有时候会遇上Socket/File: Can’t open so many files的问题;这个值也会影响服务器的最大并发数,其实Linux是有文件句柄限制的,而且Linux默认不是很高,一般都是1024,生产服务器用 其实很容易就达到这个数量。下面说的是,如何通过正解配置来改正这个系统默认值。因为这个问题是我配置Nginx+php5时遇到了,所以我将这篇归纳进
- hibernate调用返回游标的存储过程
Supanccy2013
javaDAOoracleHibernatejdbc
注:原创作品,转载请注明出处。
上篇博文介绍的是hibernate调用返回单值的存储过程,本片博文说的是hibernate调用返回游标的存储过程。
此此扁博文的存储过程的功能相当于是jdbc调用select 的作用。
1,创建oracle中的包,并在该包中创建的游标类型。
---创建oracle的程
- Spring 4.2新特性-更简单的Application Event
wiselyman
application
1.1 Application Event
Spring 4.1的写法请参考10点睛Spring4.1-Application Event
请对比10点睛Spring4.1-Application Event
使用一个@EventListener取代了实现ApplicationListener接口,使耦合度降低;
1.2 示例
包依赖
<p