- 【笔记】扩散模型(七):Latent Diffusion Models(Stable Diffusion)论文解读与代码实现
LittleNyima
DiffusionModels笔记stablediffusionAIGC人工智能
论文链接:High-ResolutionImageSynthesiswithLatentDiffusionModels官方实现:CompVis/latent-diffusion、CompVis/stable-diffusion这一篇文章的内容是LatentDiffusionModels(LDM),也就是大名鼎鼎的StableDiffusion。先前的扩散模型一直面临的比较大的问题是采样空间太大,学
- 《深入浅出多模态》(九)多模态经典模型:MiniGPT-v2、MiniGPT5
GoAI
深入浅出多模态深入浅出AI多模态vllmLLM大模型stablediffusion
AI学习星球推荐:GoAI的学习社区知识星球是一个致力于提供《机器学习|深度学习|CV|NLP|大模型|多模态|AIGC》各个最新AI方向综述、论文等成体系的学习资料,配有全面而有深度的专栏内容,包括不限于前沿论文解读、资料共享、行业最新动态以、实践教程、求职相关(简历撰写技巧、面经资料与心得)多方面综合学习平台,强烈推荐AI小白及AI爱好者学习,性价比非常高!加入星球➡️点击链接✨专栏介绍:</
- 人脸识别算法MTCNN论文解读
纸上得来终觉浅~
图像处理paper阅读人脸识别mtcnn
论文名称:JointFaceDetectionandAlignmentusingMulti-taskCascadedConvolutionalNetworks论文地址:https://www.lao-wang.com/wp-content/uploads/2017/07/1604.02878.pdf1、MTCNN原理MTCNN,Multi-taskconvolutionalneuralnetwor
- NL2SQL进阶系列(5):论文解读业界前沿方案(DIN-SQL、C3-SQL、DAIL-SQL、SQL-PaLM)、新一代数据集BIRD-SQL解读
汀、人工智能
LLM工业级落地实践copilot人工智能NL2SQLLLM自然语言处理NL2DSLText2SQL
NL2SQL进阶系列(5):论文解读业界前沿方案(DIN-SQL、C3-SQL、DAIL-SQL)、新一代数据集BIRD-SQL解读NL2SQL基础系列(1):业界顶尖排行榜、权威测评数据集及LLM大模型(SpidervsBIRD)全面对比优劣分析[Text2SQL、Text2DSL]NL2SQL基础系列(2):主流大模型与微调方法精选集,Text2SQL经典算法技术回顾七年发展脉络梳理NL2SQ
- 图形学论文笔记
Jozky86
图形学图形学笔记
文章目录PBD:XPBD:shapematchingPBD:【深入浅出NvidiaFleX】(1)PositionBasedDynamics最简化的PBD(基于位置的动力学)算法详解-论文原理讲解和太极代码最简化的PBD(基于位置的动力学)算法详解-论文原理讲解和太极代码XPBD:基于XPBD的物理模拟一条龙:公式推导+代码+文字讲解(纯自制)【论文精读】XPBD基于位置的动力学XPBD论文解读(
- 【论文解读】Macroblock Level Rate Control for Low Delay H.264/AVC based Video Communication
Codec Conductor
论文解读#x264h.264x264音视频码率控制视频编解码AVC
级别:IEEE时间:2015作者:MinGao等机构:哈尔滨工业大学下载:MacroblockLevelRateControlforLowDelayH.264/AVCbasedVideoCommunication摘要算法目的:提出了一种针对低延迟H.264/AVC视频通信的宏块(MB)级别速率控制算法。算法基础:基于ρ域速率模型,该模型涉及量化后零变换系数的百分比(ρ)。关键技术:使用指数模型来描
- 论文解读:从Dijkstra的On-the-Fly到Go的三色标记算法,并行垃圾回收的起源
liuwill
计算机科学算法后端论文阅读
我们经常听到关于垃圾回收的说法是,某种垃圾回收算法是一种特定语言特有的,容易理解成,垃圾回收的算法跟特定编程语言是绑定的,但是仔细想想,垃圾回收器是一种分配和管理内存的机制或者程序,内存管理跟语言本身是没有必然联系的,只是语言运行时实现时的一种策略选择。更严格来说的,其实不仅仅是垃圾回收策略,一些语言的语法特性,也不是某种语言专属,语言的实现者完全可以通过组合,自己选择自己偏好的策略,发明更多的语
- 机器人建图算法2.1从栅格占据地图到ESDF地图
RuiH.AI
机器人建图算法学习算法
机器人建图算法2.1从栅格占据地图到ESDF地图前言论文解读示意图说明伪代码说明算法流程总结前言最基础的地图是占据栅格地图Occupancymap,每个格子标明了该位置是否被物体占据。然而对于规划和避障而言,地图中的占据信息是不够的,还需要障碍距离、方向等信息。TSDF和ESDF地图弥补了这个缺陷。IROS2010:ImprovedupdatingofEuclideandistancemapsan
- 知识图谱最新权威综述论文解读:实体发现
ngl567
上期我们介绍了2020年知识图谱最新权威综述论文《ASurveyonKnowledgeGraphs:Representation,AcquisitionandApplications》的知识图谱补全部分,本期我们将一起学习这篇论文的实体发现部分。论文地址:https://arxiv.org/pdf/2002.00388.pdfarxiv.org1实体发现本节将基于实体的知识获取区分为若干细分任务,
- 这个论文解读 agent 比GPT-4 还要牛!强烈推荐!
夕小瑶
人工智能自然语言处理transformerchatgpt深度学习神经网络
已经2024年了,该出现一个论文解读AIAgent了。但是目前市面上哪怕最强的GPT-4来做论文解读也是不行,所以我们顺手做了这样一个agent,因为——我们公司的算法同学也需要刷论文啊喂=,=而且我们也经常人工写论文解读嘛,所以干脆就顺手做一个得了,不求赚钱,但求有点用。真正尝试过用gpt去刷论文、写论文解读的小伙伴,一定深有体验——费劲。其他agents也没有能搞定的,所以我们就索性做了个,传
- 《生产调度优化》专栏导读
Lins号丹
生产调度优化生产调度优化
文章分类生产调度优化问题入门相关问题求解调度问题求解效率探讨相关论文解读生产调度优化问题入门文章包含重点简述生产车间调度优化问题两种常用的FJSP模型解析FJSP问题的标准测试数据集的Python代码解析FJSP标准测试数据代码相关问题求解文章求解器问题类型【作业车间调度JSP】通过python调用PuLP线性规划库求解PuLP(开源)作业车间调度JSP【作业车间调度JSP】通过PuLP调用COP
- 【ChatIE】论文解读:Zero-Shot Information Extraction via Chatting with ChatGPT
Bigcrab__
神经网络Tensorflowchatgpt人工智能深度学习
文章目录介绍ChatIEEntity-RelationTripleExtration(RE)NamedEntityRecognition(NER)EventExtraction(EE)实验结果结论论文:Zero-ShotInformationExtractionviaChattingwithChatGPT作者:XiangWei,XingyuCui,NingCheng,XiaobinWang,Xin
- FaE:基于符号知识的适应性和可解释的神经记忆
NLP论文解读
©原创作者|朱林论文解读:FactsasExperts:AdaptableandInterpretableNeuralMemoryoverSymbolicKnowledge论文作者:GoogleResearch论文地址:https://arxiv.org/abs/2007.00849收录会议:NAACL202101介绍大规模语言模型,如BERT、Transformer等是现代自然语言建模的核心,其
- 论文解读:知识图谱融入预训练模型
NLP论文解读
深度学习机器学习人工智能自然语言处理知识图谱
©NLP论文解读原创•作者|疯狂的Max背景及动机以BERT为基础的预训练模型在各项NLP任务获得巨大的成功,与此同时,如何在泛化的预训练模型基础上融入某些特定领域的知识图谱以获得在特定领域内让模型有更优秀的表现,这一课题也一直备受关注。然而大部分之前的将知识图谱融入预训练模型的工作都是将知识图谱的知识转化为知识导向的训练任务,通过更新整个模型的参数来进行训练,来实现知识图谱的融入。这种方法虽然可
- 知识增广的预训练语言模型K-BERT:将知识图谱作为训练语料
NLP论文解读
知识图谱语言模型bert
©原创作者|杨健论文标题:K-BERT:EnablingLanguageRepresentationwithKnowledgeGraph收录会议:AAAI论文链接:https://ojs.aaai.org/index.php/AAAI/article/view/5681项目地址:https://github.com/autoliuweijie/K-BERT01背景论述笔者在前面的论文解读中提到过E
- HybridA* 论文解读
Big David
自动驾驶规划系列论文阅读笔记HybridA*论文阅读混合Astar
本文旨在对原论文进行翻译,对混合A*有一个大概的理解论文题目:PracticalSearchTechniquesinPathPlanningforAutonomousDriving1摘要本文描述了一个实用的路径规划算法,无人驾驶汽车在未知的环境中,障碍物通过机器人的传感器实时检测产生平滑的路径。这项工作的动机和实验验证了在2007年DARPA城市挑战赛,机器人必须在停车场自主导航。本文的方法有两个
- 论文解读《Zero-Shot Category-Level Object Pose Estimation》类别级6D位姿估计
ZYLer_
6D位姿估计人工智能计算机视觉
论文:《Zero-ShotCategory-LevelObjectPoseEstimation》该文整体感觉不难,处理流程比较新颖,可以重点参考。Code:https://github.com/applied-ai-lab/zero-shot-pose(48star)摘要:解决问题:实例级姿态估计的问题。=>**零样本(也就是预测未见过的物体(没有该实例的数据标记和CAD模型),类别级)**预测来
- 论文解读《Gen6D: Generalizable Model-Free 6-DoF Object Pose Estimation from RGB Images》 小样本6D位姿估计
ZYLer_
6D位姿估计机器学习人工智能计算机视觉3d深度学习
论文:《Gen6D:GeneralizableModel-Free6-DoFObjectPoseEstimationfromRGBImages》Code:https://github.com/liuyuan-pal/gen6d(469star)摘要:现有的可推广姿态估计器要么需要高质量的对象模型,要么在测试时需要额外的深度图或对象掩码,这大大限制了其应用范围。为了满足实际应用中的需求,我们认为姿态
- 论文解读《EPro-PnP: Generalized End-to-End Probabilistic Perspective-n-Points for Monocular Object Pose 》
ZYLer_
6D位姿估计计算机视觉人工智能3d
论文:《EPro-PnP:GeneralizedEnd-to-EndProbabilisticPerspective-n-PointsforMonocularObjectPoseEstimation》Code:https://github.com/tjiiv-cprg/epro-pnp(909star)作者的视频简单介绍:https://www.bilibili.com/video/BV13T41
- VLM 系列——Llava1.6——论文解读
TigerZ*
AIGC算法人工智能AIGC深度学习计算机视觉
一、概述1、是什么Llava1.6是llava1.5的升级暂时还没有论文等,是一个多模态视觉-文本大语言模型,可以完成:图像描述、视觉问答、根据图片写代码(HTML、JS、CSS),潜在可以完成单个目标的视觉定位、名画名人等识别(问答、描述)。支持单幅图片输入(可以作为第一个或第二个输入),多轮文本对话。本文基于CLIP的视觉编码器,以及多个版本语言解码器,使用最简单的两层FC构成MLP映射视觉特
- VLM (MLLM)系列——论文解读总结
TigerZ*
AIGC算法深度学习人工智能计算机视觉AIGC图像处理算法
建议以下几篇都看一下吧,因为这几篇相对出发点都有新意,并且也都在同期的思南评测中有排名。CLIP*数据:用了4亿的互联网自有图文对数据。*模型:由一个视觉编码器、一个文本编码器*训练:一阶段预训练,在32768的batchsize下做的对比学习。中文CLIP*数据:由LAION5B等构成一个2亿的图文对数据。*模型:整体和CLIP类似,由一个视觉编码器、一个文本编码器。*训练:两阶段预训练,权重来
- VLM 系列——MoE-LLaVa——论文解读
TigerZ*
AIGC算法深度学习人工智能AIGC计算机视觉transformer
一、概述1、是什么moe-Llava是Llava1.5的改进全称《MoE-LLaVA:MixtureofExpertsforLargeVision-LanguageModels》,是一个多模态视觉-文本大语言模型,可以完成:图像描述、视觉问答,潜在可以完成单个目标的视觉定位、名画名人等识别(问答、描述),未知是否能偶根据图片写代码(HTML、JS、CSS)。支持单幅图片输入(可以作为第一个或第二个
- VLM 系列——LLaVA-MoLE——论文解读
TigerZ*
AIGC算法深度学习人工智能AIGCtransformer计算机视觉
一、概述1、是什么Llava-MoLE是Llava1.5的改进全称《LLaVA-MoLE:SparseMixtureofLoRAExpertsforMitigatingDataConflictsinInstructionFinetuningMLLMs》,是一个多模态视觉-文本大语言模型,可以完成:图像描述、视觉问答,潜在可以完成单个目标的视觉定位、名画名人等识别(问答、描述),未知是否能偶根据图片
- 【论文解读】Document-Level Relation Extraction with Adaptive Focal Loss and Knowledge Distillation
Queen_sy
深度学习人工智能
目录1Introduction1Docre任务比句子级任务更具挑战性:2现有的Docre方法:3现有的Docre方法存在三个局限性2Methodology1使用轴向注意力模块作为特征提取器:2第二,提出适应性焦距损失3第三用知识蒸馏相关知识类别不平衡问题长尾类分布交叉熵损失和二元交叉熵损失二元交叉熵损失定义为知识蒸馏全文翻译https://baijiahao.baidu.com/s?id=1737
- 知识增强的预训练模型简介
NLP论文解读
©NLP论文解读原创•作者|杨健专栏系列概览该专栏主要介绍自然语言处理领域目前比较前沿的领域—知识增强的预训练语言模型。通过解读该主题具备代表性的论文以及对应的代码,为大家揭示当前最新的发展状况。为了能够和大家更好的分享自己的收获,笔者将遵循下面几个原则。1、理论讲解尽量深入浅出,通过举例子或者大白话讲解论文,而非仅针对原文翻译。2、针对论文中一些重要的术语,适时的做出解释。3、理论和实践相结合,
- AAAI 2020「自然语言处理(NLP)论文解读」文本简化要素分析
Shu灬下雨天
来源:AINLPer微信公众号编辑:ShuYini校稿:ShuYini时间:2020-2-17TILE:DiscourseLevelFactorsforSentenceDeletioninTextSimplification.Contributor:俄亥俄州立大学Paper:https://arxiv.org/abs/1911.10384v1Code:None文章摘要 文本简化需要对相关的句子
- 论文笔记-Generative Adversarial Nets
升不上三段的大鱼
论文链接:https://papers.nips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf论文解读:https://www.bilibili.com/video/BV1rb4y187vD?share_source=copy_web一句话总结:提出了生成模型框架GAN,包括一个生成模型G和一个判别模型D,用有监督的损失
- 「论文搬运」王亦洲课题组 CVPR 2021 入选论文解读:时间序列疾病预测的因果隐马尔可夫模型
Sternstunden
论文计算机视觉人工智能深度学习cvpr
本文是对发表于计算机视觉和模式识别领域的顶级会议CVPR2021的论文“CausalHiddenMarkovModelforTimeSeriesDiseaseForecasting(时间序列疾病预测的因果隐马尔可夫模型)”的解读。该论文由北京大学王亦洲课题组与深睿医疗等单位合作,针对时间序列疾病预测的问题,提出了因果隐马尔可夫模型描述疾病的动态发展过程,并使用基于VAE的变分框架进行学习。通过对图
- EMNLP 2023精选:Text-to-SQL任务的前沿进展(下篇)——Findings论文解读
Q同学的nlp笔记
sql人工智能nlp自然语言处理深度学习语言模型论文阅读
导语本文记录了今年的自然语言处理国际顶级会议EMNLP2023中接收的所有与Text-to-SQL相关(通过搜索标题关键词查找得到,可能不全)的论文,共计12篇,包含5篇正会论文和7篇Findings论文,以下是对这些论文的略读,某几篇也有详细的笔记(见链接)。由于篇数过多,分为两篇博客记录,本篇为第二篇,主要记录Findings论文:序号类型标题1MainBenchmarkingandImpro
- 2018年美国大学生数学建模竞赛B题优秀论文解读
校苑数模
2018年美赛B题优秀论文解读校苑数模校苑数模今天2018年美赛B题赛题2018MCMProblemB:HowManyLanguages?Background:Therearecurrentlyabout6,900languagesspokenonEarth.Abouthalftheworld’spopulationclaimoneofthefollowingtenlanguages(inorde
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号