Author: Nathan Inkawhich
__
In this tutorial we will take a deeper look at how to finetune and
feature extract the torchvision models
__, all
of which have been pretrained on the 1000-class Imagenet dataset. This
tutorial will give an indepth look at how to work with several modern
CNN architectures, and will build an intuition for finetuning any
PyTorch model. Since each model architecture is different, there is no
boilerplate finetuning code that will work in all scenarios. Rather, the
researcher must look at the existing architecture and make custom
adjustments for each model.
In this document we will perform two types of transfer learning:
finetuning and feature extraction. In finetuning, we start with a
pretrained model and update all of the model’s parameters for our new
task, in essence retraining the whole model. In feature extraction,
we start with a pretrained model and only update the final layer weights
from which we derive predictions. It is called feature extraction
because we use the pretrained CNN as a fixed feature-extractor, and only
change the output layer. For more technical information about transfer
learning see here
__ and
here
__.
In general both transfer learning methods follow the same few steps:
from __future__ import print_function
from __future__ import division
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
import matplotlib.pyplot as plt
import time
import os
import copy
print("PyTorch Version: ",torch.__version__)
print("Torchvision Version: ",torchvision.__version__)
PyTorch Version: 0.4.1
Torchvision Version: 0.2.1
Here are all of the parameters to change for the run. We will use the
hymenoptera_data dataset which can be downloaded
here
.
This dataset contains two classes, bees and ants, and is
structured such that we can use the
ImageFolder
dataset, rather than writing our own custom dataset. Download the data
and set the data_dir
input to the root directory of the dataset. The
model_name
input is the name of the model you wish to use and must
be selected from this list:
[resnet, alexnet, vgg, squeezenet, densenet, inception]
The other inputs are as follows: num_classes
is the number of
classes in the dataset, batch_size
is the batch size used for
training and may be adjusted according to the capability of your
machine, num_epochs
is the number of training epochs we want to run,
and feature_extract
is a boolean that defines if we are finetuning
or feature extracting. If feature_extract = False
, the model is
finetuned and all model parameters are updated. If
feature_extract = True
, only the last layer parameters are updated,
the others remain fixed.
# Top level data directory. Here we assume the format of the directory conforms
# to the ImageFolder structure
data_dir = "F:/工作学习/编程与操作系统/Pytorch/datasets/hymenoptera_data"
# Models to choose from [resnet, alexnet, vgg, squeezenet, densenet, inception]
model_name = "squeezenet"
# Number of classes in the dataset
num_classes = 2
# Batch size for training (change depending on how much memory you have)
batch_size = 8
# Number of epochs to train for
num_epochs = 15
# Flag for feature extracting. When False, we finetune the whole model,
# when True we only update the reshaped layer params
feature_extract = True
在编写模型的调整代码之前,定义一些helper函数。
模型训练与验证函数
train_model
函数用于处理给定模型的训练与验证流程。该函数的输入如下:
PyTorch模型、dataloaders字典、损失函数、optimizer、一个表示训练和验证的
轮数(epochs)以及表示模型是否是Inception模型的布尔变量。
The is_inception flag is used to accomodate the
Inception v3 model, as that architecture uses an auxiliary output and
the overall model loss respects both the auxiliary output and the final
output, as described
here
该函数将在对模型训练特定的轮数之后运行一次完整的验证。并保留训练过程中性
能最好的模型(以验证集的准确率为度量方式),在训练结束后返回性能最好的模型。
每进行一轮训练和验证,将分别打印训练和验证准确率。
def train_model(model, dataloaders, criterion, optimizer, num_epochs=25, is_inception=False):
since = time.time()
val_acc_history = []
# 该变量用于保存具有最好性能的模型
# 要注意这里的复制应采用deepcopy的方式,具体原因参考博客https://blog.csdn.net/u011630575/article/details/78604226
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
print('-' * 10)
# Each epoch has a training and validation phase
# 每一轮需要进行训练、验证
for phase in ['train', 'val']:
if phase == 'train':
model.train() # Set model to training mode
else:
model.eval() # Set model to evaluate mode
running_loss = 0.0
running_corrects = 0
# Iterate over data.
# 在数据上进行迭代
for inputs, labels in dataloaders[phase]:
inputs = inputs.to(device)
labels = labels.to(device)
# zero the parameter gradients
# 将梯度清零
optimizer.zero_grad()
# 前向传播
# 只在训练时对梯度等信息进行记录
with torch.set_grad_enabled(phase == 'train'):
# 得到模型输出并计算损失,注意Inception模型存在辅助输出,最终损失为最终输出的损失与辅助
# 损失的线性组合
# Special case for inception because in training it has an auxiliary output. In train
# mode we calculate the loss by summing the final output and the auxiliary output
# but in testing we only consider the final output.
if is_inception and phase == 'train':
# From https://discuss.pytorch.org/t/how-to-optimize-inception-model-with-auxiliary-classifiers/7958
outputs, aux_outputs = model(inputs)
loss1 = criterion(outputs, labels)
loss2 = criterion(aux_outputs, labels)
loss = loss1 + 0.4*loss2
else:
outputs = model(inputs)
loss = criterion(outputs, labels)
# 得到预测值
_, preds = torch.max(outputs, 1)
# 只在模型训练时进行反向传播和优化(backward + optimize)
if phase == 'train':
loss.backward()
optimizer.step()
# statistics
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
epoch_loss = running_loss / len(dataloaders[phase].dataset)
epoch_acc = running_corrects.double() / len(dataloaders[phase].dataset)
print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))
# deep copy the model
if phase == 'val' and epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = copy.deepcopy(model.state_dict())
if phase == 'val':
val_acc_history.append(epoch_acc)
print()
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))
print('Best val Acc: {:4f}'.format(best_acc))
# load best model weights
model.load_state_dict(best_model_wts)
return model, val_acc_history
设置模型参数的.requires_grad属性
在进行特征提取时,使用该helper函数将模型参数的.requires_grad
属性设置
为False
。在我们加载预训练模型时,所有模型参数的.requires_grad
属性
默认设置为True
,这一设定适用于从零开始训练或微调操作。然而,当我们在
进行特征提取操作并且仅希望对新初始化的网络层进行梯度计算时,就不需要保留
其他参数的梯度。
def set_parameter_requires_grad(model, feature_extracting):
if feature_extracting:
for param in model.parameters():
param.requires_grad = False
Now to the most interesting part. Here is where we handle the reshaping
of each network. Note, this is not an automatic procedure and is unique
to each model. Recall, the final layer of a CNN model, which is often
times an FC layer, has the same number of nodes as the number of output
classes in the dataset. Since all of the models have been pretrained on
Imagenet, they all have output layers of size 1000, one node for each
class. The goal here is to reshape the last layer to have the same
number of inputs as before, AND to have the same number of outputs as
the number of classes in the dataset. In the following sections we will
discuss how to alter the architecture of each model individually. But
first, there is one important detail regarding the difference between
finetuning and feature-extraction.
When feature extracting, we only want to update the parameters of the
last layer, or in other words, we only want to update the parameters for
the layer(s) we are reshaping. Therefore, we do not need to compute the
gradients of the parameters that we are not changing, so for efficiency
we set the .requires_grad attribute to False. This is important because
by default, this attribute is set to True. Then, when we initialize the
new layer and by default the new parameters have .requires_grad=True
so only the new layer’s parameters will be updated. When we are
finetuning we can leave all of the .required_grad’s set to the default
of True.
Finally, notice that inception_v3 requires the input size to be
(299,299), whereas all of the other models expect (224,224).
Resnet
Resnet was introduced in the paper Deep Residual Learning for Image Recognition
. There are several
variants of different sizes, including Resnet18, Resnet34, Resnet50,
Resnet101, and Resnet152, all of which are available from torchvision
models. Here we use Resnet18, as our dataset is small and only has two
classes. When we print the model, we see that the last layer is a fully
connected layer as shown below:
(fc): Linear(in_features=512, out_features=1000, bias=True)
Thus, we must reinitialize model.fc
to be a Linear layer with 512
input features and 2 output features with:
model.fc = nn.Linear(512, num_classes)
Alexnet
Alexnet was introduced in the paper ImageNet Classification with Deep Convolutional Neural Networks
and was the first very successful CNN on the ImageNet dataset. When we
print the model architecture, we see the model output comes from the 6th
layer of the classifier
(classifier): Sequential(
...
(6): Linear(in_features=4096, out_features=1000, bias=True)
)
To use the model with our dataset we reinitialize this layer as
model.classifier[6] = nn.Linear(4096,num_classes)
VGG
VGG was introduced in the paper Very Deep Convolutional Networks for Large-Scale Image Recognition
Torchvision offers eight versions of VGG with various lengths and some
that have batch normalizations layers. Here we use VGG-11 with batch
normalization. The output layer is similar to Alexnet, i.e.
(classifier): Sequential(
...
(6): Linear(in_features=4096, out_features=1000, bias=True)
)
Therefore, we use the same technique to modify the output layer
model.classifier[6] = nn.Linear(4096,num_classes)
Squeezenet
The Squeeznet architecture is described in the paper SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size
and uses a different output
structure than any of the other models shown here. Torchvision has two
versions of Squeezenet, we use version 1.0. The output comes from a 1x1
convolutional layer which is the 1st layer of the classifier:
(classifier): Sequential(
(0): Dropout(p=0.5)
(1): Conv2d(512, 1000, kernel_size=(1, 1), stride=(1, 1))
(2): ReLU(inplace)
(3): AvgPool2d(kernel_size=13, stride=1, padding=0)
)
To modify the network, we reinitialize the Conv2d layer to have an
output feature map of depth 2 as
model.classifier[1] = nn.Conv2d(512, num_classes, kernel_size=(1,1), stride=(1,1))
Densenet
Densenet was introduced in the paper Densely Connected Convolutional Networks
.Torchvision has four
variants of Densenet but here we only use Densenet-121. The output layer
is a linear layer with 1024 input features:
(classifier): Linear(in_features=1024, out_features=1000, bias=True)
To reshape the network, we reinitialize the classifier’s linear layer as
model.classifier = nn.Linear(1024, num_classes)
Inception v3
Finally, Inception v3 was first described in Rethinking the Inception Architecture for Computer Vision
. This network is
unique because it has two output layers when training. The second output
is known as an auxiliary output and is contained in the AuxLogits part
of the network. The primary output is a linear layer at the end of the
network. Note, when testing we only consider the primary output. The
auxiliary output and primary output of the loaded model are printed as:
(AuxLogits): InceptionAux(
...
(fc): Linear(in_features=768, out_features=1000, bias=True)
)
...
(fc): Linear(in_features=2048, out_features=1000, bias=True)
To finetune this model we must reshape both layers. This is accomplished
with the following
model.AuxLogits.fc = nn.Linear(768, num_classes)
model.fc = nn.Linear(2048, num_classes)
Notice, many of the models have similar output structures, but each must
be handled slightly differently. Also, check out the printed model
architecture of the reshaped network and make sure the number of output
features is the same as the number of classes in the dataset.
def initialize_model(model_name, num_classes, feature_extract, use_pretrained=True):
# Initialize these variables which will be set in this if statement. Each of these
# variables is model specific.
model_ft = None
input_size = 0
if model_name == "resnet":
""" Resnet18
"""
model_ft = models.resnet18(pretrained=use_pretrained)
set_parameter_requires_grad(model_ft, feature_extract)
num_ftrs = model_ft.fc.in_features
model_ft.fc = nn.Linear(num_ftrs, num_classes)
input_size = 224
elif model_name == "alexnet":
""" Alexnet
"""
model_ft = models.alexnet(pretrained=use_pretrained)
set_parameter_requires_grad(model_ft, feature_extract)
num_ftrs = model_ft.classifier[6].in_features
model_ft.classifier[6] = nn.Linear(num_ftrs,num_classes)
input_size = 224
elif model_name == "vgg":
""" VGG11_bn
"""
model_ft = models.vgg11_bn(pretrained=use_pretrained)
set_parameter_requires_grad(model_ft, feature_extract)
num_ftrs = model_ft.classifier[6].in_features
model_ft.classifier[6] = nn.Linear(num_ftrs,num_classes)
input_size = 224
elif model_name == "squeezenet":
""" Squeezenet
"""
model_ft = models.squeezenet1_0(pretrained=use_pretrained)
set_parameter_requires_grad(model_ft, feature_extract)
model_ft.classifier[1] = nn.Conv2d(512, num_classes, kernel_size=(1,1), stride=(1,1))
model_ft.num_classes = num_classes
input_size = 224
elif model_name == "densenet":
""" Densenet
"""
model_ft = models.densenet121(pretrained=use_pretrained)
set_parameter_requires_grad(model_ft, feature_extract)
num_ftrs = model_ft.classifier.in_features
model_ft.classifier = nn.Linear(num_ftrs, num_classes)
input_size = 224
elif model_name == "inception":
""" Inception v3
Be careful, expects (299,299) sized images and has auxiliary output
"""
model_ft = models.inception_v3(pretrained=use_pretrained)
set_parameter_requires_grad(model_ft, feature_extract)
# Handle the auxilary net
num_ftrs = model_ft.AuxLogits.fc.in_features
model_ft.AuxLogits.fc = nn.Linear(num_ftrs, num_classes)
# Handle the primary net
num_ftrs = model_ft.fc.in_features
model_ft.fc = nn.Linear(num_ftrs,num_classes)
input_size = 299
else:
print("Invalid model name, exiting...")
exit()
return model_ft, input_size
# Initialize the model for this run
model_ft, input_size = initialize_model(model_name, num_classes, feature_extract, use_pretrained=True)
# Print the model we just instantiated
print(model_ft)
E:\Anaconda\envs\python35\lib\site-packages\torchvision\models\squeezenet.py:94: UserWarning: nn.init.kaiming_uniform is now deprecated in favor of nn.init.kaiming_uniform_.
init.kaiming_uniform(m.weight.data)
E:\Anaconda\envs\python35\lib\site-packages\torchvision\models\squeezenet.py:92: UserWarning: nn.init.normal is now deprecated in favor of nn.init.normal_.
init.normal(m.weight.data, mean=0.0, std=0.01)
Downloading: "https://download.pytorch.org/models/squeezenet1_0-a815701f.pth" to C:\Users\Xiang/.torch\models\squeezenet1_0-a815701f.pth
100.0%
SqueezeNet(
(features): Sequential(
(0): Conv2d(3, 96, kernel_size=(7, 7), stride=(2, 2))
(1): ReLU(inplace)
(2): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=True)
(3): Fire(
(squeeze): Conv2d(96, 16, kernel_size=(1, 1), stride=(1, 1))
(squeeze_activation): ReLU(inplace)
(expand1x1): Conv2d(16, 64, kernel_size=(1, 1), stride=(1, 1))
(expand1x1_activation): ReLU(inplace)
(expand3x3): Conv2d(16, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(expand3x3_activation): ReLU(inplace)
)
(4): Fire(
(squeeze): Conv2d(128, 16, kernel_size=(1, 1), stride=(1, 1))
(squeeze_activation): ReLU(inplace)
(expand1x1): Conv2d(16, 64, kernel_size=(1, 1), stride=(1, 1))
(expand1x1_activation): ReLU(inplace)
(expand3x3): Conv2d(16, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(expand3x3_activation): ReLU(inplace)
)
(5): Fire(
(squeeze): Conv2d(128, 32, kernel_size=(1, 1), stride=(1, 1))
(squeeze_activation): ReLU(inplace)
(expand1x1): Conv2d(32, 128, kernel_size=(1, 1), stride=(1, 1))
(expand1x1_activation): ReLU(inplace)
(expand3x3): Conv2d(32, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(expand3x3_activation): ReLU(inplace)
)
(6): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=True)
(7): Fire(
(squeeze): Conv2d(256, 32, kernel_size=(1, 1), stride=(1, 1))
(squeeze_activation): ReLU(inplace)
(expand1x1): Conv2d(32, 128, kernel_size=(1, 1), stride=(1, 1))
(expand1x1_activation): ReLU(inplace)
(expand3x3): Conv2d(32, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(expand3x3_activation): ReLU(inplace)
)
(8): Fire(
(squeeze): Conv2d(256, 48, kernel_size=(1, 1), stride=(1, 1))
(squeeze_activation): ReLU(inplace)
(expand1x1): Conv2d(48, 192, kernel_size=(1, 1), stride=(1, 1))
(expand1x1_activation): ReLU(inplace)
(expand3x3): Conv2d(48, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(expand3x3_activation): ReLU(inplace)
)
(9): Fire(
(squeeze): Conv2d(384, 48, kernel_size=(1, 1), stride=(1, 1))
(squeeze_activation): ReLU(inplace)
(expand1x1): Conv2d(48, 192, kernel_size=(1, 1), stride=(1, 1))
(expand1x1_activation): ReLU(inplace)
(expand3x3): Conv2d(48, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(expand3x3_activation): ReLU(inplace)
)
(10): Fire(
(squeeze): Conv2d(384, 64, kernel_size=(1, 1), stride=(1, 1))
(squeeze_activation): ReLU(inplace)
(expand1x1): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1))
(expand1x1_activation): ReLU(inplace)
(expand3x3): Conv2d(64, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(expand3x3_activation): ReLU(inplace)
)
(11): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=True)
(12): Fire(
(squeeze): Conv2d(512, 64, kernel_size=(1, 1), stride=(1, 1))
(squeeze_activation): ReLU(inplace)
(expand1x1): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1))
(expand1x1_activation): ReLU(inplace)
(expand3x3): Conv2d(64, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
(expand3x3_activation): ReLU(inplace)
)
)
(classifier): Sequential(
(0): Dropout(p=0.5)
(1): Conv2d(512, 2, kernel_size=(1, 1), stride=(1, 1))
(2): ReLU(inplace)
(3): AvgPool2d(kernel_size=13, stride=1, padding=0)
)
)
Now that we know what the input size must be, we can initialize the data
transforms, image datasets, and the dataloaders. Notice, the models were
pretrained with the hard-coded normalization values, as described
here
__.
# Data augmentation and normalization for training
# 对训练数据进行数据增强与归一化操作
# Just normalization for validation
# 对验证数据只进行归一化操作
data_transforms = {
'train': transforms.Compose([
transforms.RandomResizedCrop(input_size),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
'val': transforms.Compose([
transforms.Resize(input_size),
transforms.CenterCrop(input_size),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
}
print("Initializing Datasets and Dataloaders...")
# Create training and validation datasets
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x]) for x in ['train', 'val']}
# Create training and validation dataloaders
dataloaders_dict = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=batch_size, shuffle=True, num_workers=4) for x in ['train', 'val']}
print(image_datasets)
# Detect if we have a GPU available
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
Initializing Datasets and Dataloaders...
{'val': Dataset ImageFolder
Number of datapoints: 153
Root Location: F:/工作学习/编程与操作系统/Pytorch/datasets/hymenoptera_data\val
Transforms (if any): Compose(
Resize(size=224, interpolation=PIL.Image.BILINEAR)
CenterCrop(size=(224, 224))
ToTensor()
Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
)
Target Transforms (if any): None, 'train': Dataset ImageFolder
Number of datapoints: 244
Root Location: F:/工作学习/编程与操作系统/Pytorch/datasets/hymenoptera_data\train
Transforms (if any): Compose(
RandomResizedCrop(size=(224, 224), scale=(0.08, 1.0), ratio=(0.75, 1.3333), interpolation=PIL.Image.BILINEAR)
RandomHorizontalFlip(p=0.5)
ToTensor()
Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
)
Target Transforms (if any): None}
Finetuning和feature extracting的最后一步是创建只更新需要更新的参数的优化器
。在预训练模型加载完成,与重构之前调用优化器。如果feature_extract=True
,
我们手动将所有参数的.requires_grad
属性设置为False,经过重新初始化的层的参数
的.requires_grad
默认设置为True。接着我们创建一个包含.requires_grad
参数为
True的列表,将该列表送入SGD算法的构建方法中。
To verify this, check out the printed parameters to learn. When
finetuning, this list should be long and include all of the model
parameters. However, when feature extracting this list should be short
and only include the weights and biases of the reshaped layers.
# Send the model to GPU
model_ft = model_ft.to(device)
# 在finetuning操作中,将对所有的参数都进行更新。而在特征提取中,只更新
# 最新初始化的参数(.requires_grad属性设置为Ture的参数)。
params_to_update = model_ft.parameters()
print("Params to learn:")
if feature_extract:
params_to_update = []
for name,param in model_ft.named_parameters():
if param.requires_grad == True:
# 将需要更新的参数存入列表中
params_to_update.append(param)
print("\t",name)
else:
for name,param in model_ft.named_parameters():
if param.requires_grad == True:
print("\t",name)
# Observe that all parameters are being optimized
optimizer_ft = optim.SGD(params_to_update, lr=0.001, momentum=0.9)
Params to learn:
classifier.1.weight
classifier.1.bias
Finally, the last step is to setup the loss for the model, then run the
training and validation function for the set number of epochs. Notice,
depending on the number of epochs this step may take a while on a CPU.
Also, the default learning rate is not optimal for all of the models, so
to achieve maximum accuracy it would be necessary to tune for each model
separately.
# Setup the loss fxn
criterion = nn.CrossEntropyLoss()
# Train and evaluate
model_ft, hist = train_model(model_ft, dataloaders_dict, criterion, optimizer_ft, num_epochs=num_epochs, is_inception=(model_name=="inception"))
Epoch 0/14
----------
train Loss: 0.4958 Acc: 0.7336
val Loss: 0.2809 Acc: 0.9085
Epoch 1/14
----------
train Loss: 0.2679 Acc: 0.8852
val Loss: 0.2913 Acc: 0.9281
Epoch 2/14
----------
train Loss: 0.2253 Acc: 0.9262
val Loss: 0.2811 Acc: 0.9412
Epoch 3/14
----------
train Loss: 0.2103 Acc: 0.9180
val Loss: 0.3146 Acc: 0.9216
Epoch 4/14
----------
train Loss: 0.1986 Acc: 0.9262
val Loss: 0.2899 Acc: 0.9216
Epoch 5/14
----------
train Loss: 0.2068 Acc: 0.9180
val Loss: 0.2758 Acc: 0.9412
Epoch 6/14
----------
train Loss: 0.1195 Acc: 0.9672
val Loss: 0.3103 Acc: 0.9281
Epoch 7/14
----------
train Loss: 0.1495 Acc: 0.9467
val Loss: 0.3068 Acc: 0.9281
Epoch 8/14
----------
train Loss: 0.1759 Acc: 0.9180
val Loss: 0.2925 Acc: 0.9477
Epoch 9/14
----------
train Loss: 0.1582 Acc: 0.9385
val Loss: 0.2764 Acc: 0.9281
Epoch 10/14
----------
train Loss: 0.1537 Acc: 0.9467
val Loss: 0.3235 Acc: 0.9412
Epoch 11/14
----------
train Loss: 0.1695 Acc: 0.9303
val Loss: 0.2864 Acc: 0.9346
Epoch 12/14
----------
train Loss: 0.1642 Acc: 0.9344
val Loss: 0.2614 Acc: 0.9412
Epoch 13/14
----------
train Loss: 0.1405 Acc: 0.9262
val Loss: 0.2643 Acc: 0.9346
Epoch 14/14
----------
train Loss: 0.1417 Acc: 0.9426
val Loss: 0.2789 Acc: 0.9346
Training complete in 2m 20s
Best val Acc: 0.947712
Just for fun, lets see how the model learns if we do not use transfer
learning. The performance of finetuning vs. feature extracting depends
largely on the dataset but in general both transfer learning methods
produce favorable results in terms of training time and overall accuracy
versus a model trained from scratch.
# Initialize the non-pretrained version of the model used for this run
scratch_model,_ = initialize_model(model_name, num_classes, feature_extract=False, use_pretrained=False)
scratch_model = scratch_model.to(device)
scratch_optimizer = optim.SGD(scratch_model.parameters(), lr=0.001, momentum=0.9)
scratch_criterion = nn.CrossEntropyLoss()
_,scratch_hist = train_model(scratch_model, dataloaders_dict, scratch_criterion, scratch_optimizer, num_epochs=num_epochs, is_inception=(model_name=="inception"))
# Plot the training curves of validation accuracy vs. number
# of training epochs for the transfer learning method and
# the model trained from scratch
ohist = []
shist = []
# train_model()返回的是tensor,需要将其转换为numpy数组
ohist = [h.cpu().numpy() for h in hist]
shist = [h.cpu().numpy() for h in scratch_hist]
plt.title("Validation Accuracy vs. Number of Training Epochs")
plt.xlabel("Training Epochs")
plt.ylabel("Validation Accuracy")
plt.plot(range(1,num_epochs+1),ohist,label="Pretrained")
plt.plot(range(1,num_epochs+1),shist,label="Scratch")
plt.ylim((0,1.))
plt.xticks(np.arange(1, num_epochs+1, 1.0))
plt.legend()
plt.show()
E:\Anaconda\envs\python35\lib\site-packages\torchvision\models\squeezenet.py:94: UserWarning: nn.init.kaiming_uniform is now deprecated in favor of nn.init.kaiming_uniform_.
init.kaiming_uniform(m.weight.data)
E:\Anaconda\envs\python35\lib\site-packages\torchvision\models\squeezenet.py:92: UserWarning: nn.init.normal is now deprecated in favor of nn.init.normal_.
init.normal(m.weight.data, mean=0.0, std=0.01)
Epoch 0/14
----------
train Loss: 0.6977 Acc: 0.5287
val Loss: 0.6931 Acc: 0.4575
Epoch 1/14
----------
train Loss: 0.6932 Acc: 0.5000
val Loss: 0.6931 Acc: 0.4575
Epoch 2/14
----------
train Loss: 0.6932 Acc: 0.5041
val Loss: 0.6931 Acc: 0.4575
Epoch 3/14
----------
train Loss: 0.6931 Acc: 0.5123
val Loss: 0.6931 Acc: 0.4575
Epoch 4/14
----------
train Loss: 0.6931 Acc: 0.5082
val Loss: 0.6931 Acc: 0.4575
Epoch 5/14
----------
train Loss: 0.6932 Acc: 0.4877
val Loss: 0.6931 Acc: 0.4575
Epoch 6/14
----------
train Loss: 0.6932 Acc: 0.5000
val Loss: 0.6931 Acc: 0.4575
Epoch 7/14
----------
train Loss: 0.6931 Acc: 0.5082
val Loss: 0.6931 Acc: 0.4575
Epoch 8/14
----------
train Loss: 0.6932 Acc: 0.4918
val Loss: 0.6931 Acc: 0.4575
Epoch 9/14
----------
train Loss: 0.6931 Acc: 0.5164
val Loss: 0.6931 Acc: 0.4575
Epoch 10/14
----------
train Loss: 0.6931 Acc: 0.5041
val Loss: 0.6931 Acc: 0.4575
Epoch 11/14
----------
train Loss: 0.6931 Acc: 0.5082
val Loss: 0.6931 Acc: 0.4575
Epoch 12/14
----------
train Loss: 0.6932 Acc: 0.4918
val Loss: 0.6931 Acc: 0.4575
Epoch 13/14
----------
train Loss: 0.6931 Acc: 0.5123
val Loss: 0.6931 Acc: 0.4575
Epoch 14/14
----------
train Loss: 0.6931 Acc: 0.4959
val Loss: 0.6931 Acc: 0.4575
Training complete in 2m 13s
Best val Acc: 0.457516
Try running some of the other models and see how good the accuracy gets.
Also, notice that feature extracting takes less time because in the
backward pass we do not have to calculate most of the gradients. There
are many places to go from here. You could: